skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal Bus Route Profiling using Odometer Data
Fixed-route bus systems are an important part of the urban transportation mix. A considerable disadvantage of buses is their slow speed, which is in part due to frequent stops, but also due to the lack of segregation from other vehicles in traffic. As such, assessing bus routes is an important aspect of route planning, scheduling, and the creation of dedicated bus lanes. In this work, we use bus tracking data from the Washington Metropolitan Area Transit Authority to discover speed patterns in relation to bus stops throughout the day. This gives us an insight on whether the routes are affected by traffic congestion or more random events such as traffic lights. We first employ a macro-level qualitative analysis to identify patterns across different trips. A micro-level quantitative analysis further refines this approach by analyzing the speed patterns around bus stops. Our analysis is based on bus odometer data, which is a one-dimensional representation of trips that has considerable accuracy when looking at speed patterns. Exploiting route metadata in relation to stops, we use Dynamic Time Warping to cluster different stops based on their speed profiles throughout the day. The clustering can be used to generate a spatiotemporal route profile and we show how such a profile provides actionable intelligence for route planning purposes.  more » « less
Award ID(s):
1637541
PAR ID:
10187142
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
Page Range / eLocation ID:
369 to 378
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a flexible rerouting strategy for the public transit to accommodate the spatio-temporal variation in the travel demand. Transit routes are typically static in nature, i.e., the buses serve well-defined routes; this results in people living in away from the bus routes choose alternate transit modes such as private automotive vehicles resulting in ever-increasing traffic congestion. In the flex-transit mode, we reroute the buses to accommodate high travel demand areas away from the static routes considering its spatio-temporal variation. We perform clustering to identify several flex stops; these are stops not on the static routes, but with high travel demand around them. We divide the bus stops on the static routes into critical and non-critical bus stops; critical bus stops refer to transfer points, where people change bus routes to reach their destinations. In the existing static scheduling process, some slack time is provided at the end of each trip to account for any travel delays. Thus, the additional travel time incurred due to taking flexible routes is constrained to be less than the available slack time. We use the percent increase in travel demand to analyze the effectiveness of the rerouting process. The proposed methodology is demonstrated using real-world travel data for Route 7 operated by the Nashville Metropolitan Transit Authority (MTA). 
    more » « less
  2. Urban public transit planning is crucial in reducing traffic congestion and enabling green transportation. However, there is no systematic way to integrate passengers' personal preferences in planning public transit routes and schedules so as to achieve high occupancy rates and efficiency gain of ride-sharing. In this paper, we take the first step tp exact passengers' preferences in planning from history public transit data. We propose a data-driven method to construct a Markov decision process model that characterizes the process of passengers making sequential public transit choices, in bus routes, subway lines, and transfer stops/stations. Using the model, we integrate softmax policy iteration into maximum entropy inverse reinforcement learning to infer the passenger's reward function from observed trajectory data. The inferred reward function will enable an urban planner to predict passengers' route planning decisions given some proposed transit plans, for example, opening a new bus route or subway line. Finally, we demonstrate the correctness and accuracy of our modeling and inference methods in a large-scale (three months) passenger-level public transit trajectory data from Shenzhen, China. Our method contributes to smart transportation design and human-centric urban planning. 
    more » « less
  3. This paper seeks to improve an underutilized conventional bus route by converting it into a semiflexible transit system where passengers provide advance notice of their intended stops, allowing buses to skip downstream stops without demand by taking shortcuts. This approach increases stop density, reduces walking distances to and from bus stops, and maintains operational efficiency. To design this system, we develop optimization models that maximize the number of stops while adhering to tour duration and arrival time constraints. A case study in Allegany County, Maryland, demonstrates significant enhancements for routes that were both underutilized (where the probability of a stop lacking demand exceeded 45%) and had layouts conducive to substantial shortcuts. In these instances, the number of stops can be increased by up to 160%, with the actual improvement depending on route configuration, passenger demand, and advance notice requirements. Funding: Financial support from the the National Science Foundation [Grant 2055347] is gratefully acknowledged. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0561 . 
    more » « less
  4. COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit. 
    more » « less
  5. We are witnessing a rapid growth of electrified vehicles due to the ever-increasing concerns on urban air quality and energy security. Compared to other types of electric vehicles, electric buses have not yet been prevailingly adopted worldwide due to their high owning and operating costs, long charging time, and the uneven spatial distribution of charging facilities. Moreover, the highly dynamic environment factors such as unpredictable traffic congestion, different passenger demands, and even the changing weather can significantly affect electric bus charging efficiency and potentially hinder the further promotion of large-scale electric bus fleets. To address these issues, in this article, we first analyze a real-world dataset including massive data from 16,359 electric buses, 1,400 bus lines, and 5,562 bus stops. Then, we investigate the electric bus network to understand its operating and charging patterns, and further verify the necessity and feasibility of a real-time charging scheduling. With such understanding, we design busCharging , a pricing-aware real-time charging scheduling system based on Markov Decision Process to reduce the overall charging and operating costs for city-scale electric bus fleets, taking the time-variant electricity pricing into account. To show the effectiveness of busCharging , we implement it with the real-world data from Shenzhen, which includes GPS data of electric buses, the metadata of all bus lines and bus stops, combined with data of 376 charging stations for electric buses. The evaluation results show that busCharging dramatically reduces the charging cost by 23.7% and 12.8% of electricity usage simultaneously. Finally, we design a scheduling-based charging station expansion strategy to verify our busCharging is also effective during the charging station expansion process. 
    more » « less