skip to main content


Title: Spatiotemporal Bus Route Profiling using Odometer Data
Fixed-route bus systems are an important part of the urban transportation mix. A considerable disadvantage of buses is their slow speed, which is in part due to frequent stops, but also due to the lack of segregation from other vehicles in traffic. As such, assessing bus routes is an important aspect of route planning, scheduling, and the creation of dedicated bus lanes. In this work, we use bus tracking data from the Washington Metropolitan Area Transit Authority to discover speed patterns in relation to bus stops throughout the day. This gives us an insight on whether the routes are affected by traffic congestion or more random events such as traffic lights. We first employ a macro-level qualitative analysis to identify patterns across different trips. A micro-level quantitative analysis further refines this approach by analyzing the speed patterns around bus stops. Our analysis is based on bus odometer data, which is a one-dimensional representation of trips that has considerable accuracy when looking at speed patterns. Exploiting route metadata in relation to stops, we use Dynamic Time Warping to cluster different stops based on their speed profiles throughout the day. The clustering can be used to generate a spatiotemporal route profile and we show how such a profile provides actionable intelligence for route planning purposes.  more » « less
Award ID(s):
1637541
NSF-PAR ID:
10187142
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
Page Range / eLocation ID:
369 to 378
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Urban public transit planning is crucial in reducing traffic congestion and enabling green transportation. However, there is no systematic way to integrate passengers' personal preferences in planning public transit routes and schedules so as to achieve high occupancy rates and efficiency gain of ride-sharing. In this paper, we take the first step tp exact passengers' preferences in planning from history public transit data. We propose a data-driven method to construct a Markov decision process model that characterizes the process of passengers making sequential public transit choices, in bus routes, subway lines, and transfer stops/stations. Using the model, we integrate softmax policy iteration into maximum entropy inverse reinforcement learning to infer the passenger's reward function from observed trajectory data. The inferred reward function will enable an urban planner to predict passengers' route planning decisions given some proposed transit plans, for example, opening a new bus route or subway line. Finally, we demonstrate the correctness and accuracy of our modeling and inference methods in a large-scale (three months) passenger-level public transit trajectory data from Shenzhen, China. Our method contributes to smart transportation design and human-centric urban planning. 
    more » « less
  2. This paper proposes a flexible rerouting strategy for the public transit to accommodate the spatio-temporal variation in the travel demand. Transit routes are typically static in nature, i.e., the buses serve well-defined routes; this results in people living in away from the bus routes choose alternate transit modes such as private automotive vehicles resulting in ever-increasing traffic congestion. In the flex-transit mode, we reroute the buses to accommodate high travel demand areas away from the static routes considering its spatio-temporal variation. We perform clustering to identify several flex stops; these are stops not on the static routes, but with high travel demand around them. We divide the bus stops on the static routes into critical and non-critical bus stops; critical bus stops refer to transfer points, where people change bus routes to reach their destinations. In the existing static scheduling process, some slack time is provided at the end of each trip to account for any travel delays. Thus, the additional travel time incurred due to taking flexible routes is constrained to be less than the available slack time. We use the percent increase in travel demand to analyze the effectiveness of the rerouting process. The proposed methodology is demonstrated using real-world travel data for Route 7 operated by the Nashville Metropolitan Transit Authority (MTA). 
    more » « less
  3. Advances in information technologies and vehicle automation have birthed new transportation services, including shared autonomous vehicles (SAVs). Shared autonomous vehicles are on-demand self-driving taxis, with flexible routes and schedules, able to replace personal vehicles for many trips in the near future. The siting and density of pick-up and drop-off (PUDO) points for SAVs, much like bus stops, can be key in planning SAV fleet operations, since PUDOs impact SAV demand, route choices, passenger wait times, and network congestion. Unlike traditional human-driven taxis and ride-hailing vehicles like Lyft and Uber, SAVs are unlikely to engage in quasi-legal procedures, like double parking or fire hydrant pick-ups. In congested settings, like central business districts (CBD) or airport curbs, SAVs and others will not be allowed to pick up and drop off passengers wherever they like. This paper uses an agent-based simulation to model the impact of different PUDO locations and densities in the Austin, Texas CBD, where land values are highest and curb spaces are coveted. In this paper 18 scenarios were tested, varying PUDO density, fleet size and fare price. The results show that for a given fare price and fleet size, PUDO spacing (e.g., one block vs. three blocks) has significant impact on ridership, vehicle-miles travelled, vehicle occupancy, and revenue. A good fleet size to serve the region’s 80 core square miles is 4000 SAVs, charging a $1 fare per mile of travel distance, and with PUDOs spaced three blocks of distance apart from each other in the CBD.

     
    more » « less
  4. The ability to accurately predict public transit ridership demand benefits passengers and transit agencies. Agencies will be able to reallocate buses to handle under or over-utilized bus routes, improving resource utilization, and passengers will be able to adjust and plan their schedules to avoid overcrowded buses and maintain a certain level of comfort. However, accurately predicting occupancy is a non-trivial task. Various reasons such as heterogeneity, evolving ridership patterns, exogenous events like weather, and other stochastic variables, make the task much more challenging. With the progress of big data, transit authorities now have access to real-time passenger occupancy information for their vehicles. The amount of data generated is staggering. While there is no shortage in data, it must still be cleaned, processed, augmented, and merged before any useful information can be generated. In this paper, we propose the use and fusion of data from multiple sources, cleaned, processed, and merged together, for use in training machine learning models to predict transit ridership. We use data that spans a 2-year period (2020-2022) incorporating transit, weather, traffic, and calendar data. The resulting data, which equates to 17 million observations, is used to train separate models for the trip and stop level prediction. We evaluate our approach on real-world transit data provided by the public transit agency of Nashville, TN. We demonstrate that the trip level model based on Xgboost and the stop level model based on LSTM outperform the baseline statistical model across the entire transit service day. 
    more » « less
  5. COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit. 
    more » « less