We propose a simple change to existing neural network structures for better defending against gradient-based adversarial attacks. Instead of using popular activation functions (such as ReLU), we advocate the use of k-Winners-Take-All (k-WTA) activation, a C0 discontinuous function that purposely invalidates the neural network model's gradient at densely distributed input data points. The proposed k-WTA activation can be readily used in nearly all existing networks and training methods with no significant overhead. Our proposal is theoretically rationalized. We analyze why the discontinuities in k-WTA networks can largely prevent gradient-based search of adversarial examples and why they at the same time remain innocuous to the network training. This understanding is also empirically backed. We test k-WTA activation on various network structures optimized by a training method, be it adversarial training or not. In all cases, the robustness of k-WTA networks outperforms that of traditional networks under white-box attacks.
more »
« less
Optimization and abstraction: a synergistic approach for analyzing neural network robustness
In recent years, the notion of local robustness (or robustness for short) has emerged as a desirable property of deep neural networks. Intuitively, robustness means that small perturbations to an input do not cause the network to perform misclassifications. In this paper, we present a novel algorithm for verifying robustness properties of neural networks. Our method synergistically combines gradient-based optimization methods for counterexample search with abstraction-based proof search to obtain a sound and (δ -)complete decision procedure. Our method also employs a data-driven approach to learn a verification policy that guides abstract interpretation during proof search. We have implemented the proposed approach in a tool called Charon and experimentally evaluated it on hundreds of benchmarks. Our experiments show that the proposed approach significantly outperforms three state-of-the-art tools, namely AI^2, Reluplex, and Reluval.
more »
« less
- Award ID(s):
- 2033851
- PAR ID:
- 10187659
- Date Published:
- Journal Name:
- Symposium on Programming Languages Design and Implementation (PLDI), 2019
- Page Range / eLocation ID:
- 731 to 744
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This paper introduces robustness verification for semantic segmentation neural networks (in short, semantic segmentation networks [SSNs]), building on and extending recent approaches for robustness verification of image classification neural networks. Despite recent progress in developing verification methods for specifications such as local adversarial robustness in deep neural networks (DNNs) in terms of scalability, precision, and applicability to different network architectures, layers, and activation functions, robustness verification of semantic segmentation has not yet been considered. We address this limitation by developing and applying new robustness analysis methods for several segmentation neural network architectures, specifically by addressing reachability analysis of up-sampling layers, such as transposed convolution and dilated convolution. We consider several definitions of robustness for segmentation, such as the percentage of pixels in the output that can be proven robust under different adversarial perturbations, and a robust variant of intersection-over-union (IoU), the typical performance evaluation measure for segmentation tasks. Our approach is based on a new relaxed reachability method, allowing users to select the percentage of a number of linear programming problems (LPs) to solve when constructing the reachable set, through a relaxation factor percentage. The approach is implemented within NNV, then applied and evaluated on segmentation datasets, such as a multi-digit variant of MNIST known as M2NIST. Thorough experiments show that by using transposed convolution for up-sampling and average-pooling for down-sampling, combined with minimizing the number of ReLU layers in the SSNs, we can obtain SSNs with not only high accuracy (IoU), but also that are more robust to adversarial attacks and amenable to verification. Additionally, using our new relaxed reachability method, we can significantly reduce the verification time for neural networks whose ReLU layers dominate the total analysis time, even in classification tasks.more » « less
-
This work studies the sensitivity of neural networks to weight perturbations, firstly corresponding to a newly developed threat model that perturbs the neural network parameters. We propose an efficient approach to compute a certified robustness bound of weight perturbations, within which neural networks will not make erroneous outputs as desired by the adversary. In addition, we identify a useful connection between our developed certification method and the problem of weight quantization, a popular model compression technique in deep neural networks (DNNs) and a ‘must-try’ step in the design of DNN inference engines on resource constrained computing platforms, such as mobiles, FPGA, and ASIC. Specifically, we study the problem of weight quantization – weight perturbations in the non-adversarial setting – through the lens of certificated robustness, and we demonstrate significant improvements on the generalization ability of quantized networks through our robustness-aware quantization scheme.more » « less
-
Given a neural network (NN) and a set of possible inputs to the network described by polyhedral constraints, we aim to compute a safe over-approximation of the set of possible output values. This operation is a fundamental primitive enabling the formal analysis of neural networks that are extensively used in a variety of machine learning tasks such as perception and control of autonomous systems. Increasingly, they are deployed in high-assurance applications, leading to a compelling use case for formal verification approaches. In this paper, we present an efficient range estimation algorithm that iterates between an expensive global combinatorial search using mixed-integer linear programming problems, and a relatively inexpensive local optimization that repeatedly seeks a local optimum of the function represented by the NN. We implement our approach and compare it with Reluplex, a recently proposed solver for deep neural networks. We demonstrate applications of our approach to computing flowpipes for neural network-based feedback controllers. We show that the use of local search in conjunction with mixed-integer linear programming solvers effectively reduces the combinatorial search over possible combinations of active neurons in the network by pruning away suboptimal nodes.more » « less
-
Given a neural network (NN) and a set of possible inputs to the network described by polyhedral constraints, we aim to compute a safe over-approximation of the set of possible output values. This operation is a fundamental primitive enabling the formal analysis of neural networks that are extensively used in a variety of machine learning tasks such as perception and control of autonomous systems. Increasingly, they are deployed in high-assurance applications, leading to a compelling use case for formal verification approaches. In this paper, we present an efficient range estimation algorithm that iterates between an expensive global combinatorial search using mixed-integer linear programming problems, and a relatively inexpensive local optimization that repeatedly seeks a local optimum of the function represented by the NN. We implement our approach and compare it with Reluplex, a recently proposed solver for deep neural networks. We demonstrate applications of our approach to computing flowpipes for neural network-based feedback controllers. We show that the use of local search in conjunction with mixed-integer linear programming solvers effectively reduces the combinatorial search over possible combinations of active neurons in the network by pruning away suboptimal nodes.more » « less
An official website of the United States government

