The large carbon (C) stock of wetlands is vulnerable to climate change, especially in high latitudes that are warming at a disproportional rate. Likewise, low-lying Arctic areas will experience increased coastal flooding under climate change and sea-level rise, which may alter goose herbivory and fecal deposition patterns if geese are pushed inland. While temperature, flooding, and feces impact soil C emissions, their interactive effects have been rarely studied. Here, we explore the impact of these interactions on carbon dioxide (CO2) and methane (CH4) emissions and nitrogen (N) mineralization (ammonification) in soils collected from four plant communities in the Yukon-Kuskokwim (Y-K) Delta, a high latitude coastal wetland in western Alaska. Communities included a Grazing Lawn, which is intensely grazed and susceptible to flooding, a Lowland Wetland and an Upland Wetland that experience moderate grazing and frequent (Lowland) and less frequent (Upland) flooding, and a rarely grazed and flooded Tundra community, located at the highest elevation. Soils were incubated for 16 weeks at 8 degrees Celsius (°C) or 18°C in microcosms and subjected to flooding and feces addition treatments with no-flood and no-feces controls. We quantified C emissions weekly and ammonification over the course of the experiment. While warming increased ammonification and C demand in the Lowland Wetland and always increased CO2 and CH4 emissions, interactions with flooding complicated warming impacts on C emissions in the Grazing Lawn and Tundra. In the Grazing Lawn, flooding increased CH4 emissions at 8°C and 18 °C, but in the Tundra, flooding suppressed CH4 emissions at 18°C. Flooding alone reduced CO2 emissions in the Upland Wetland. Feces addition increased CO2 emissions in all communities, but feces impacts on CH4 emissions and ammonification were minimal. When feces and flooding occurred together in the Lowland Wetland, CH4 emissions decreased compared to when feces was added without concomitant flood. Feces decreased the immobilization of ammonium and N demand in the Tundra only. Our results suggest that flooding could partially offset C loss from warming in less frequently flooded, higher elevation communities, but this offset could be negligible if flooding and warming drastically increase C loss in more flooded lowland areas.
more »
« less
Iron Redox Reactions Can Drive Microtopographic Variation in Upland Soil Carbon Dioxide and Nitrous Oxide Emissions
Topographic depressions in upland soils experience anaerobic conditions conducive for iron (Fe) reduction following heavy rainfall. These depressional areas can also accumulate reactive Fe compounds, carbon (C), and nitrate, creating potential hot spots of Fe-mediated carbon dioxide (CO2) and nitrous oxide (N2O) production. While there are multiple mechanisms by which Fe redox reactions can facilitate CO2 and N2O production, it is unclear what their cumulative effect is on CO2 and N2O emissions in depressional soils under dynamic redox. We hypothesized that Fe reduction and oxidation facilitate greater CO2 and N2O emissions in depressional compared to upslope soils in response to flooding. To test this, we amended upslope and depressional soils with Fe(II), Fe(III), or labile C and measured CO2 and N2O emissions in response to flooding. We found that depressional soils have greater Fe reduction potential, which can contribute to soil CO2 emissions during flooded conditions when C is not limiting. Additionally, Fe(II) addition stimulated N2O production, suggesting that chemodenitrification may be an important pathway of N2O production in depressions that accumulate Fe(II). As rainfall intensification results in more frequent flooding of depressional upland soils, Fe-mediated CO2 and N2O production may become increasingly important pathways of soil greenhouse gas emissions.
more »
« less
- Award ID(s):
- 1831842
- PAR ID:
- 10187663
- Date Published:
- Journal Name:
- Soil Systems
- Volume:
- 3
- Issue:
- 3
- ISSN:
- 2571-8789
- Page Range / eLocation ID:
- 60
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hydroxyl radical (•OH) is produced in soils from oxidation of reduced iron (Fe(II)) by dissolved oxygen (O2) and can oxidize dissolved organic carbon (DOC) to carbon dioxide (CO2). Understanding the role of •OH on CO2 production in soils requires knowing whether Fe(II) production or O2 supply to soils limits •OH production. To test the relative importance of Fe(II) production versus O2 supply, we measured changes in Fe(II) and O2 and in situ •OH production during simulated precipitation events and during common, waterlogged conditions in mesocosms from two landscape ages and the two dominant vegetation types of the Arctic. The balance of Fe(II) production and consumption controlled •OH production during precipitation events that supplied O2 to the soils. During static, waterlogged conditions, •OH production was controlled by O2 supply because Fe(II) production was higher than its consumption (oxidation) by O2. An average precipitation event (4 mm) resulted in 200 µmol •OH m−2 per day produced compared to 60 µmol •OH m−2 per day produced during waterlogged conditions. These findings suggest that the oxidation of DOC to CO2 by •OH in arctic soils, a process potentially as important as microbial respiration of DOC in arctic surface waters, will depend on the patterns and amounts of rainfall that oxygenate the soil.more » « less
-
Abstract Sea level rise and more frequent and larger storms will increase saltwater flooding in coastal terrestrial ecosystems, altering soil‐atmosphere CO2and CH4exchange. Understanding these impacts is particularly relevant in high‐latitude coastal soils that hold large carbon stocks but where the interaction of salinity and moisture on greenhouse gas flux remains unexplored. Here, we quantified the effects of salinity and moisture on CO2and CH4fluxes from low‐Arctic coastal soils from three landscape positions (two Wetlands and Upland Tundra) distinguished by elevation, flooding frequency, soil characteristics, and vegetation. We used a full factorial laboratory incubation experiment of three soil moisture levels (40%, 70%, or 100% saturation) and four salinity levels (freshwater, 3, 6, or 12 ppt). Salinity and soil moisture were important controls on CO2and CH4emissions across all landscape positions. In saturated soil, CO2emissions increased with salinity in the lower elevation landscape positions but not in the Upland Tundra soil. Saturated soil was necessary for large CH4emissions. CH4emissions were greatest with low salinity, or after 11 weeks of incubation when SO42−was exhausted allowing for methanogenesis as the dominant mechanism of anaerobic respiration. In partially saturated soil, greater salinity suppressed CO2production in all soils. CH4fluxes were overall quite low, but increased between 3 and 6 ppt in the Tundra. In the future, a small increase in floodwater salinity may increase CO2production while suppressing CH4production; however, where water is impounded, CH4production could become large, particularly in the landscapes most likely to flood.more » « less
-
This study investigates mechanisms that generate regularly spaced iron-rich bands in upland soils. These striking features appear in soils worldwide, but beyond a generalized association with changing redox, their genesis is yet to be explained. Upland soils exhibit significant redox fluctuations driven by rainfall, groundwater changes, or irrigation. Pattern formation in such systems provides an opportunity to investigate the temporal aspects of spatial self-organization, which have been heretofore understudied. By comparing multiple alternative mechanisms, we found that regular iron banding in upland soils is explained by coupling two sets of scale-dependent feedbacks, the general principle of Turing morphogenesis. First, clay dispersion and coagulation in iron redox fluctuations amplify soil Fe(III) aggregation and crystal growth to a level that negatively affects root growth. Second, the activation of this negative root response to highly crystalline Fe(III) leads to the formation of rhythmic iron bands. In forming iron bands, environmental variability plays a critical role. It creates alternating anoxic and oxic conditions for required pattern-forming processes to occur in distinctly separated times and determines durations of anoxic and oxic episodes, thereby controlling relative rates of processes accompanying oxidation and reduction reactions. As Turing morphogenesis requires ratios of certain process rates to be within a specific range, environmental variability thus modifies the likelihood that pattern formation will occur. Projected changes of climatic regime could significantly alter many spatially self-organized systems, as well as the ecological functioning associated with the striking patterns they present. This temporal dimension of pattern formation merits close attention in the future.more » « less
-
Abstract. Tidal salt marsh soils can be a dynamic source of greenhouse gases such ascarbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O),as well as sulfur-based trace gases such as carbon disulfide (CS2) anddimethylsulfide (DMS) which play roles in global climate and carbon–sulfurbiogeochemistry. Due to the difficulty in measuring trace gases in coastalecosystems (e.g., flooding, salinity), our current understanding is based onsnapshot instantaneous measurements (e.g., performed during daytime lowtide) which complicates our ability to assess the role of these ecosystemsfor natural climate solutions. We performed continuous, automatedmeasurements of soil trace gas fluxes throughout the growing season toobtain high-temporal frequency data and to provide insights into magnitudesand temporal variability across rapidly changing conditions such as tidalcycles. We found that soil CO2 fluxes did not show a consistent dielpattern, CH4, N2O, and CS2 fluxes were highly variable withfrequent pulse emissions (> 2500 %, > 10 000 %,and > 4500 % change, respectively), and DMS fluxes onlyoccurred midday with changes > 185 000 %. When we comparedcontinuous measurements with discrete temporal measurements (during daytime,at low tide), discrete measurements of soil CO2 fluxes were comparablewith those from continuous measurements but misrepresent the temporalvariability and magnitudes of CH4, N2O, DMS, and CS2.Discrepancies between the continuous and discrete measurement data result indifferences for calculating the sustained global warming potential (SGWP),mainly by an overestimation of CH4 fluxes when using discretemeasurements. The high temporal variability of trace gas fluxes complicatesthe accurate calculation of budgets for use in blue carbon accounting andearth system models.more » « less
An official website of the United States government

