skip to main content

Title: Iron Redox Reactions Can Drive Microtopographic Variation in Upland Soil Carbon Dioxide and Nitrous Oxide Emissions
Topographic depressions in upland soils experience anaerobic conditions conducive for iron (Fe) reduction following heavy rainfall. These depressional areas can also accumulate reactive Fe compounds, carbon (C), and nitrate, creating potential hot spots of Fe-mediated carbon dioxide (CO2) and nitrous oxide (N2O) production. While there are multiple mechanisms by which Fe redox reactions can facilitate CO2 and N2O production, it is unclear what their cumulative effect is on CO2 and N2O emissions in depressional soils under dynamic redox. We hypothesized that Fe reduction and oxidation facilitate greater CO2 and N2O emissions in depressional compared to upslope soils in response to flooding. To test this, we amended upslope and depressional soils with Fe(II), Fe(III), or labile C and measured CO2 and N2O emissions in response to flooding. We found that depressional soils have greater Fe reduction potential, which can contribute to soil CO2 emissions during flooded conditions when C is not limiting. Additionally, Fe(II) addition stimulated N2O production, suggesting that chemodenitrification may be an important pathway of N2O production in depressions that accumulate Fe(II). As rainfall intensification results in more frequent flooding of depressional upland soils, Fe-mediated CO2 and N2O production may become increasingly important pathways of soil greenhouse gas emissions.
Authors:
; ;
Award ID(s):
1831842
Publication Date:
NSF-PAR ID:
10187663
Journal Name:
Soil Systems
Volume:
3
Issue:
3
Page Range or eLocation-ID:
60
ISSN:
2571-8789
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydroxyl radical (•OH) is produced in soils from oxidation of reduced iron (Fe(II)) by dissolved oxygen (O2) and can oxidize dissolved organic carbon (DOC) to carbon dioxide (CO2). Understanding the role of •OH on CO2 production in soils requires knowing whether Fe(II) production or O2 supply to soils limits •OH production. To test the relative importance of Fe(II) production versus O2 supply, we measured changes in Fe(II) and O2 and in situ •OH production during simulated precipitation events and during common, waterlogged conditions in mesocosms from two landscape ages and the two dominant vegetation types of the Arctic. The balance of Fe(II) production and consumption controlled •OH production during precipitation events that supplied O2 to the soils. During static, waterlogged conditions, •OH production was controlled by O2 supply because Fe(II) production was higher than its consumption (oxidation) by O2. An average precipitation event (4 mm) resulted in 200 µmol •OH m−2 per day produced compared to 60 µmol •OH m−2 per day produced during waterlogged conditions. These findings suggest that the oxidation of DOC to CO2 by •OH in arctic soils, a process potentially as important as microbial respiration of DOC in arctic surface waters, will depend on the patternsmore »and amounts of rainfall that oxygenate the soil.« less
  2. Biochar is a carbon-rich material prepared from the pyrolysis of biomass under various conditions. Recently, biochar drew great attention due to its promising potential in climate change mitigation, soil amendment, and environmental control. Obviously, biochar can be a beneficial soil amendment in several ways including preventing nutrients loss due to leaching, increasing N and P mineralization, and enabling the microbial mediation of N2O and CO2 emissions. However, there are also conflicting reports on biochar effects, such as water logging and weathering induced change of surface properties that ultimately affects microbial growth and soil fertility. Despite the voluminous reports on soil and biochar properties, few studies have systematically addressed the effects of biochar on the sequestration of carbon, nitrogen, and phosphorus in soils. Information on microbially-mediated transformation of carbon (C), nitrogen (N), and phosphorus (P) species in the soil environment remains relatively uncertain. A systematic documentation of how biochar influences the fate and transport of carbon, phosphorus, and nitrogen in soil is crucial to promoting biochar applications toward environmental sustainability. This report first provides an overview on the adsorption of carbon, phosphorus, and nitrogen species on biochar, particularly in soil systems. Then, the biochar-mediated transformation of organic species, and the transportmore »of carbon, nitrogen, and phosphorus in soil systems are discussed. This review also reports on the weathering process of biochar and implications in the soil environment. Lastly, the current knowledge gaps and priority research directions for the biochar-amended systems in the future are assessed. This review focuses on literatures published in the past decade (2009–2021) on the adsorption, degradation, transport, weathering, and transformation of C, N, and P species in soil systems with respect to biochar applications.« less
  3. Abstract. Tidal salt marsh soils can be a dynamic source of greenhouse gases such ascarbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O),as well as sulfur-based trace gases such as carbon disulfide (CS2) anddimethylsulfide (DMS) which play roles in global climate and carbon–sulfurbiogeochemistry. Due to the difficulty in measuring trace gases in coastalecosystems (e.g., flooding, salinity), our current understanding is based onsnapshot instantaneous measurements (e.g., performed during daytime lowtide) which complicates our ability to assess the role of these ecosystemsfor natural climate solutions. We performed continuous, automatedmeasurements of soil trace gas fluxes throughout the growing season toobtain high-temporal frequency data and to provide insights into magnitudesand temporal variability across rapidly changing conditions such as tidalcycles. We found that soil CO2 fluxes did not show a consistent dielpattern, CH4, N2O, and CS2 fluxes were highly variable withfrequent pulse emissions (> 2500 %, > 10 000 %,and > 4500 % change, respectively), and DMS fluxes onlyoccurred midday with changes > 185 000 %. When we comparedcontinuous measurements with discrete temporal measurements (during daytime,at low tide), discrete measurements of soil CO2 fluxes were comparablewith those from continuous measurements but misrepresent the temporalvariability and magnitudes of CH4, N2O, DMS, and CS2.Discrepancies between the continuous and discrete measurement data result indifferences for calculating the sustainedmore »global warming potential (SGWP),mainly by an overestimation of CH4 fluxes when using discretemeasurements. The high temporal variability of trace gas fluxes complicatesthe accurate calculation of budgets for use in blue carbon accounting andearth system models.« less
  4. The increased environmental abundance of anthropogenic reactive nitrogen species (Nr = ammonium [NH4+], nitrite [NO2􀀀 ] and nitrate [NO3􀀀 ]) may increase atmospheric nitrous oxide (N2O) concentrations, and thus global warming and stratospheric ozone depletion. Nitrogen cycling and N2O production, reduction, and emissions could be amplified in carbonate karst aquifers because of their extensive global range, susceptibility to nitrogen contamination, and groundwater-surface water mixing that varies redox conditions of the aquifer. The magnitude of N2O cycling in karst aquifers is poorly known, however, and thus we sampled thirteen springs discharging from the karstic Upper Floridan Aquifer (UFA) to evaluate N2O cycling. The springs can be separated into three groups based on variations in subsurface residence times, differences in surface–groundwater interactions, and variable dissolved organic carbon (DOC) and dissolved oxygen (DO) concentrations. These springs are oxic to sub-oxic and have NO3􀀀 concentrations that range from < 0.1 to 4.2 mg N-NO3􀀀 /L and DOC concentrations that range from < 0.1 to 50 mg C/L. Maximum spring water N2O concentrations are 3.85 μg N-N2O/L or ~ 12 times greater than water equilibrated with atmospheric N2O. The highest N2O concentrations correspond with the lowest NO3􀀀 concentrations. Where recharge water has residence times ofmore »a few days, partial denitrification to N2O occurs, while complete denitrification to N2 is more prominent in springs with longer subsurface residence times. Springs with short residence times have groundwater emission factors greater than the global average of 0.0060, reflecting N2O production, whereas springs with residence times of months to years have groundwater emission factors less than the global average. These findings imply that N2O cycling in karst aquifers depends on DOC and DO concentrations in recharged surface water and subsequent time available for N processing in the subsurface.« less
  5. The increased environmental abundance of anthropogenic reactive nitrogen species (Nr = ammonium [NH4+], nitrite [NO2−] and nitrate [NO3−]) may increase atmospheric nitrous oxide (N2O) concentrations, and thus global warming and stratospheric ozone depletion. Nitrogen cycling and N2O production, reduction, and emissions could be amplified in carbonate karst aquifers because of their extensive global range, susceptibility to nitrogen contamination, and groundwater-surface water mixing that varies redox conditions of the aquifer. The magnitude of N2O cycling in karst aquifers is poorly known, however, and thus we sampled thirteen springs discharging from the karstic Upper Floridan Aquifer (UFA) to evaluate N2O cycling. The springs can be separated into three groups based on variations in subsurface residence times, differences in surface–groundwater interactions, and variable dissolved organic carbon (DOC) and dissolved oxygen (DO) concentrations. These springs are oxic to sub-oxic and have NO3− concentrations that range from < 0.1 to 4.2 mg N-NO3−/L and DOC concentrations that range from < 0.1 to 50 mg C/L. Maximum spring water N2O concentrations are 3.85 μg N-N2O/L or ~ 12 times greater than water equilibrated with atmospheric N2O. The highest N2O concentrations correspond with the lowest NO3− concentrations. Where recharge water has residence times of a few days,more »partial denitrification to N2O occurs, while complete denitrification to N2 is more prominent in springs with longer subsurface residence times. Springs with short residence times have groundwater emission factors greater than the global average of 0.0060, reflecting N2O production, whereas springs with residence times of months to years have groundwater emission factors less than the global average. These findings imply that N2O cycling in karst aquifers depends on DOC and DO concentrations in recharged surface water and subsequent time available for N processing in the subsurface.« less