skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trace gas fluxes from tidal salt marsh soils: implications for carbon–sulfur biogeochemistry
Abstract. Tidal salt marsh soils can be a dynamic source of greenhouse gases such ascarbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O),as well as sulfur-based trace gases such as carbon disulfide (CS2) anddimethylsulfide (DMS) which play roles in global climate and carbon–sulfurbiogeochemistry. Due to the difficulty in measuring trace gases in coastalecosystems (e.g., flooding, salinity), our current understanding is based onsnapshot instantaneous measurements (e.g., performed during daytime lowtide) which complicates our ability to assess the role of these ecosystemsfor natural climate solutions. We performed continuous, automatedmeasurements of soil trace gas fluxes throughout the growing season toobtain high-temporal frequency data and to provide insights into magnitudesand temporal variability across rapidly changing conditions such as tidalcycles. We found that soil CO2 fluxes did not show a consistent dielpattern, CH4, N2O, and CS2 fluxes were highly variable withfrequent pulse emissions (> 2500 %, > 10 000 %,and > 4500 % change, respectively), and DMS fluxes onlyoccurred midday with changes > 185 000 %. When we comparedcontinuous measurements with discrete temporal measurements (during daytime,at low tide), discrete measurements of soil CO2 fluxes were comparablewith those from continuous measurements but misrepresent the temporalvariability and magnitudes of CH4, N2O, DMS, and CS2.Discrepancies between the continuous and discrete measurement data result indifferences for calculating the sustained global warming potential (SGWP),mainly by an overestimation of CH4 fluxes when using discretemeasurements. The high temporal variability of trace gas fluxes complicatesthe accurate calculation of budgets for use in blue carbon accounting andearth system models.  more » « less
Award ID(s):
1652594
PAR ID:
10395719
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Biogeosciences
Volume:
19
Issue:
19
ISSN:
1726-4189
Page Range / eLocation ID:
4655 to 4670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dataset Abstract Trace gases (nitrous oxide, methane, and carbon dioxide) have been measured on the LTER Main Site since 1991 and on Successional and Forest sites since 1993. Trace gas fluxes are measured twice monthly or monthly until the ground freezes using permanently-installed, in-situ static chambers. CH4 and N2O are analyzed with gas-chromatography and CO2 with an infrared gas analyzer. Soil moisture and temperature are measured during sampling. original data source http://lter.kbs.msu.edu/datasets/16 
    more » « less
  2. Abstract. Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. Technological advancesallow us to measure multiple GHGs simultaneously, and now it is possible to provide complete GHG budgets from soils (i.e., CO2, CH4,and N2O fluxes). We propose that there is a conflict between the convenience of simultaneously measuring multiple soil GHG fluxes at fixedtime intervals (e.g., once or twice per month) and the intrinsic temporal variability in and patterns of different GHG fluxes. Information derived fromfixed time intervals – commonly done during manual field campaigns – had limitations to reproducing statistical properties, temporal dependence,annual budgets, and associated uncertainty when compared with information derived from continuous measurements (i.e., automated hourly measurements)for all soil GHG fluxes. We present a novel approach (i.e., temporal univariate Latin hypercube sampling) that can be applied to provide insightsand optimize monitoring efforts of GHG fluxes across time. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixedtime intervals (mainly when measurements are limited to once per month), but an optimized sampling approach can be used to reduce bias anduncertainty. These results have implications for assessing GHG fluxes from soils and consequently reduce uncertainty in the role of soils innature-based solutions. 
    more » « less
  3. The CCGG cooperative air sampling network effort began in 1967 at Niwot Ridge, Colorado. Today, the network is an international effort which includes regular discrete samples from the NOAA ESRL/GML baseline observatories, cooperative fixed sites, and commercial ships. Air samples are collected approximately weekly from a globally distributed network of sites. Samples are analyzed for Carbon Dioxide (CO2), Methane (CH4), Carbon Monoxide (CO), Hydrogen Gas (H2), Nitrous Oxide (N2O), and Sulfur Hexafluoride (SF6); and by INSTAAR for the stable isotopes of CO2 and CH4 and for many volatile organic compounds (VOC) such as ethane (C2H6), ethylene (C2H4) and propane (C3H8). Measurement data are used to identify long-term trends, seasonal variability, and spatial distribution of carbon cycle gases. 
    more » « less
  4. null (Ed.)
    Surface ocean biogeochemistry and photochemistry regulate ocean–atmosphere fluxes of trace gases critical for Earth's atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or p CO 2 ) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N 2 O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes. 
    more » « less
  5. Soil atmosphere fluxes of the trace gases; carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) have been measured at several locations at the Hubbard Brook Experimental Forest (HBEF) including 1) the “freeze” study reference plots that provide contrast between stands dominated (80%) by sugar maple versus yellow birch and low and high elevation areas, 2) the Bear Brook Watershed where trace gas sampling is coordinated with long-term monitoring of microbial biomass and activity and 3) watershed 1 where trace gas sampling locations were co-located with long-term microbial biomass and activity monitoring sites that are located near a subset of the lysimeter sites established for the calcium addition study on this watershed. This dataset contains the Watershed 1 and Bear Brook data. Freeze plot trace gas can be found in: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=251. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less