skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measurements of the self-assembly kinetics of individual viral capsids around their RNA genome
Self-assembly is widely used by biological systems to build functional nanostructures, such as the protein capsids of RNA viruses. But because assembly is a collective phenomenon involving many weakly interacting subunits and a broad range of timescales, measurements of the assembly pathways have been elusive. We use interferometric scattering microscopy to measure the assembly kinetics of individual MS2 bacteriophage capsids around MS2 RNA. By recording how many coat proteins bind to each of many individual RNA strands, we find that assembly proceeds by nucleation followed by monotonic growth. Our measurements reveal the assembly pathways in quantitative detail and also show their failure modes. We use these results to critically examine models of the assembly process.  more » « less
Award ID(s):
1764269
PAR ID:
10187811
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
45
ISSN:
0027-8424
Page Range / eLocation ID:
22485 to 22490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the pathways by which simple RNA viruses self-assemble from their coat proteins and RNA is of practical and fundamental interest. Although RNA–protein interactions are thought to play a critical role in the assembly, our understanding of their effects is limited because the assembly process is difficult to observe directly. We address this problem by using interferometric scattering microscopy, a sensitive optical technique with high dynamic range, to follow the in vitro assembly kinetics of more than 500 individual particles of brome mosaic virus (BMV)—for which RNA–protein interactions can be controlled by varying the ionic strength of the buffer. We find that when RNA–protein interactions are weak, BMV assembles by a nucleation-and-growth pathway in which a small cluster of RNA-bound proteins must exceed a critical size before additional proteins can bind. As the strength of RNA–protein interactions increases, the nucleation time becomes shorter and more narrowly distributed, but the time to grow a capsid after nucleation is largely unaffected. These results suggest that the nucleation rate is controlled by RNA–protein interactions, while the growth process is driven less by RNA–protein interactions and more by protein–protein interactions and intraprotein forces. The nucleated pathway observed with the plant virus BMV is strikingly similar to that previously observed with bacteriophage MS2, a phylogenetically distinct virus with a different host kingdom. These results raise the possibility that nucleated assembly pathways might be common to other RNA viruses. 
    more » « less
  2. The ribosome is a large ribonucleoprotein assembly that uses diverse and complex molecular interactions to maintain proper folding. In vivo assembled ribosomes have been isolated using MS2 tags installed in either the 16S or 23S ribosomal RNAs (rRNAs), to enable studies of ribosome structure and function in vitro . RNA tags in the Escherichia coli large ribosomal (50S) subunit have commonly been inserted into an extended helix H98 in 23S rRNA, as this addition does not affect cellular growth or in vitro ribosome activity. Here, we find that E. coli 50S subunits with MS2 tags inserted in H98 are destabilized compared to wild type (WT) 50S subunits. We identify the loss of RNA-RNA tertiary contacts that bridge helices H1, H94, and H98 as the cause of destabilization. Using cryogenic electron microscopy (cryo-EM), we show that this interaction is disrupted by the addition of the MS2 tag and can be restored through the insertion of a single adenosine in the extended H98 helix. This work establishes ways to improve MS2 tags in the 50S subunit that maintain ribosome stability and investigates a complex RNA tertiary structure that may be important for stability in various bacterial ribosomes. 
    more » « less
  3. Understanding the mechanisms by which single-stranded RNA viruses regulate capsid assembly around their RNA genomes has become increasingly important for the development of both antiviral treatments and drug delivery systems. In this study, we investigate the effects of RNA-induced allostery in a single-stranded RNA virus—Levivirus bacteriophage MS2 assembly—using the computational methods of the Dynamic Flexibility Index and the Dynamic Coupling Index. We demonstrate that not only does asymmetric binding of RNA to a symmetric MS2 coat protein dimer increase the flexibility of the distant FG-loop, inducing a conformational change to an asymmetric dimer, but also RNA binding reorganizes long-distance communications, making all the other positions extremely sensitive to the fluctuation of the ordered FG-loop. Additionally, we find that a point mutation in the FG-loop, W82R, leads to the loss of this asymmetry in communications, likely being a leading cause for assembly-deficient dimers. Lastly, this dominant communication that enhances its dynamic coupling with all the distal positions is not only a property of the dimer but is also exhibited by all the observed capsid intermediates. This strong dynamic coupling allows for unidirectional signal transduction that drives the formation of the experimentally observed capsid intermediates and fully assembled capsid. 
    more » « less
  4. Abstract Satellite tobacco mosaic virus (STMV) is a model system for studying viral assembly and stability due to its architecture: a single-stranded RNA genome enclosed in an icosahedral capsid. Coupling a polarizable force-field to enhanced sampling, we explored at high-resolution the long-timescale structural dynamics of a complete ∼1M-atom STMV. RNA-free capsids exhibit remarkable stability at physiological salt concentrations, suggesting an evolutionary adaptation for capsid reuse during the viral life cycle. This observation challenges the notion that empty capsids are exclusively products of abortive assembly, positioning them instead as functional intermediates in viral reproduction. Additionally, RNA encapsidation creates electrostatic dependencies that magnesium ions mitigate, stabilizing both RNA and capsid through long-residence-time interactions with phosphate groups. Chloride ions further influence capsid permeability by modulating salt-bridge disruptions and interprotomeric interactions, with these effects being pH-dependent: enhanced at pH < 7, preserving nucleocapsid integrity, or weakened at pH = 7, facilitating disassembly and RNA release. 
    more » « less
  5. Most coarse-grained models of individual capsomers associated with viruses employ rigid building blocks that do not exhibit shape adaptation during self-assembly. We develop a coarse-grained general model of viral capsomers that incorporates their stretching and bending energies while retaining many features of the rigid-body models, including an overall trapezoidal shape with attractive interaction sites embedded in the lateral walls to favor icosahedral capsid assembly. Molecular dynamics simulations of deformable capsomers reproduce the rich self-assembly behavior associated with a general T=1 icosahedral virus system in the absence of a genome. Transitions from non-assembled configurations to icosahedral capsids to kinetically-trapped malformed structures are observed as the steric attraction between capsomers is increased. An assembly diagram in the space of capsomer–capsomer steric attraction and capsomer deformability reveals that assembling capsomers of higher deformability into capsids requires increasingly large steric attraction between capsomers. Increasing capsomer deformability can reverse incorrect capsomer–capsomer binding, facilitating transitions from malformed structures to symmetric capsids; however, making capsomers too soft inhibits assembly and yields fluid-like structures. 
    more » « less