skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracking Differential Activation of Primary and Supplementary Motor Cortex Across Timing Tasks: An fNIRS Validation Study
Functional near-infrared spectroscopy (fNIRS) provides an alternative to functional magnetic resonance imaging (fMRI) for assessing changes in cortical hemodynamics. To establish the utility of fNIRS for measuring differential recruitment of the motor network during the production of timing-based actions, we measured cortical hemodynamic responses in 10 healthy adults while they performed two versions of a finger-tapping task. The task, used in an earlier fMRI study (Jantzen et al., 2004), was designed to track the neural basis of different timing behaviors. Participants paced their tapping to a metronomic tone, then continued tapping at the established pace without the tone. Initial tapping was either synchronous or syncopated relative to the tone. This produced a 2 × 2 design: synchronous or syncopated tapping and pacing the tapping with or continuing without a tone. Accuracy of the timing of tapping was tracked while cortical hemodynamics were monitored using fNIRS. Hemodynamic responses were computed by canonical statistical analysis across trials in each of the four conditions. Task-induced brain activation resulted in significant increases in oxygenated hemoglobin concentration (oxy-Hb) in a broad region in and around the motor cortex. Overall, syncopated tapping was harder behaviorally and produced more cortical activation than synchronous tapping. Thus, we observed significant changes in oxy-Hb in direct relation to the complexity of the task.  more » « less
Award ID(s):
1633722
PAR ID:
10187884
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of neuroscience methods
Volume:
341
ISSN:
0165-0270
Page Range / eLocation ID:
108790
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective. Spontaneous fluctuations of cerebral hemodynamics measured by functional magnetic resonance imaging (fMRI) are widely used to study the network organization of the brain. The temporal correlations among the ultra-slow, <0.1 Hz fluctuations across the brain regions are interpreted as functional connectivity maps and used for diagnostics of neurological disorders. However, despite the interest narrowed in the ultra-slow fluctuations, hemodynamic activity that exists beyond the ultra-slow frequency range could contribute to the functional connectivity, which remains unclear.Approach. In the present study, we have measured the brain-wide hemodynamics in the human participants with functional near-infrared spectroscopy (fNIRS) in a whole-head, cap-based and high-density montage at a sampling rate of 6.25 Hz. In addition, we have acquired resting state fMRI scans in the same group of participants for cross-modal evaluation of the connectivity maps. Then fNIRS data were deliberately down-sampled to a typical fMRI sampling rate of ∼0.5 Hz and the resulted differential connectivity maps were subject to a k-means clustering.Main results. Our diffuse optical topographical analysis of fNIRS data have revealed a default mode network (DMN) in the spontaneous deoxygenated and oxygenated hemoglobin changes, which remarkably resemble the same fMRI network derived from participants. Moreover, we have shown that the aliased activities in the down-sampled optical signals have altered the connectivity patterns, resulting in a network organization of aliased functional connectivity in the cerebral hemodynamics.Significance.The results have for the first time demonstrated that fNIRS as a broadly accessible modality can image the resting-state functional connectivity in the posterior midline, prefrontal and parietal structures of the DMN in the human brain, in a consistent pattern with fMRI. Further empowered by the fast sampling rate of fNIRS, our findings suggest the presence of aliased connectivity in the current understanding of the human brain organization. 
    more » « less
  2. Abstract High‐field preclinical functional MRI (fMRI) is enabled the high spatial resolution mapping of vessel‐specific hemodynamic responses, that is single‐vessel fMRI. In contrast to investigating the neuronal sources of the fMRI signal, single‐vessel fMRI focuses on elucidating its vascular origin, which can be readily implemented to identify vascular changes relevant to vascular dementia or cognitive impairment. However, the limited spatial and temporal resolution of fMRI is hindered hemodynamic mapping of intracortical microvessels. Here, the radial encoding MRI scheme is implemented to measure BOLD signals of individual vessels penetrating the rat somatosensory cortex. Radial encoding MRI is employed to map cortical activation with a focal field of view (FOV), allowing vessel‐specific functional mapping with 50 × 50 µm2in‐plane resolution at a 1 to 2 Hz sampling rate. Besides detecting refined hemodynamic responses of intracortical micro‐venules, the radial encoding‐based single‐vessel fMRI enables the distinction of fMRI signals from vessel and peri‐vessel voxels due to the different contribution of intravascular and extravascular effects. 
    more » « less
  3. Abstract Laminar-specific functional magnetic resonance imaging (fMRI) has been widely used to study circuit-specific neuronal activity by mapping spatiotemporal fMRI response patterns across cortical layers. Hemodynamic responses reflect indirect neuronal activity given the limitation of spatial and temporal resolution. Previously, a gradient-echo-based line-scanning fMRI (GELINE) method was proposed with high temporal (50 ms) and spatial (50 µm) resolution to better characterize the fMRI onset time across cortical layers by employing two saturation RF pulses. However, the imperfect RF saturation performance led to poor boundary definition of the reduced region of interest (ROI) and aliasing problems outside of the ROI. Here, we propose an α (alpha)-180 spin-echo-based line-scanning fMRI (SELINE) method in animals to resolve this issue by employing a refocusing 180˚ RF pulse perpendicular to the excitation slice (without any saturation RF pulse) and also achieve high spatiotemporal resolution. In contrast to GELINE signals which peaked at the superficial layer, we detected varied peaks of laminar-specific BOLD signals across deeper cortical layers using the SELINE method, indicating the well-defined exclusion of the large draining-vein effect using the spin-echo sequence. Furthermore, we applied the SELINE method with a 200 ms repetition time (TR) to sample the fast hemodynamic changes across cortical layers with a less draining vein effect. In summary, this SELINE method provides a novel acquisition scheme to identify microvascular-sensitive laminar-specific BOLD responses across cortical depth. 
    more » « less
  4. Functional near infrared spectroscopy (fNIR) is a noninvasive, portable optical imaging tool to monitor changes in hemodynamic responses (i.e., oxygenated hemoglobin (HbO)) within the prefrontal cortex (PFC) in response to sensory, motor or cognitive activation. We used fNIR for monitoring PFC activation during learning of simulated laparoscopic surgical tasks throughout 4 days of training and testing. Blocked (BLK) and random (RND) practice orders were used to test the practice schedule effect on behavioral, hemodynamic responses and relative neural efficiency (EFFrel-neural) measures during transfer. Left and right PFC for both tasks showed significant differences with RND using less HbO than BLK. Cognitive workload showed RND exhibiting high EFFrel-neural across the PFC for the coordination task while the more difficult cholecystectomy task showed EFFrel-neural differences only in the left PFC. Use of brain activation, behavioral and EFFrel-neural measures can provide a more accurate depiction of the generalization or transfer of learning. 
    more » « less
  5. Dynamic adaptation is an error-driven process of adjusting planned motor actions to changes in task dynamics (Shadmehr, 2017). Adapted motor plans are consolidated into memories that contribute to better performance on re-exposure. Consolidation begins within 15 min following training (Criscimagna-Hemminger and Shadmehr, 2008), and can be measured via changes in resting state functional connectivity (rsFC). For dynamic adaptation, rsFC has not been quantified on this timescale, nor has its relationship to adaptative behavior been established. We used a functional magnetic resonance imaging (fMRI)-compatible robot, the MR-SoftWrist (Erwin et al., 2017), to quantify rsFC specific to dynamic adaptation of wrist movements and subsequent memory formation in a mixed-sex cohort of human participants. We acquired fMRI during a motor execution and a dynamic adaptation task to localize brain networks of interest, and quantified rsFC within these networks in three 10-min windows occurring immediately before and after each task. The next day, we assessed behavioral retention. We used a mixed model of rsFC measured in each time window to identify changes in rsFC with task performance, and linear regression to identify the relationship between rsFC and behavior. Following the dynamic adaptation task, rsFC increased within the cortico-cerebellar network and decreased interhemispherically within the cortical sensorimotor network. Increases within the cortico-cerebellar network were specific to dynamic adaptation, as they were associated with behavioral measures of adaptation and retention, indicating that this network has a functional role in consolidation. Instead, decreases in rsFC within the cortical sensorimotor network were associated with motor control processes independent from adaptation and retention. SIGNIFICANCE STATEMENTMotor memory consolidation processes have been studied via functional magnetic resonance imaging (fMRI) by analyzing changes in resting state functional connectivity (rsFC) occurring more than 30 min after adaptation. However, it is unknown whether consolidation processes are detectable immediately (<15 min) following dynamic adaptation. We used an fMRI-compatible wrist robot to localize brain regions involved in dynamic adaptation in the cortico-thalamic-cerebellar (CTC) and cortical sensorimotor networks and quantified changes in rsFC within each network immediately after adaptation. Different patterns of change in rsFC were observed compared with studies conducted at longer latencies. Increases in rsFC in the cortico-cerebellar network were specific to adaptation and retention, while interhemispheric decreases in the cortical sensorimotor network were associated with alternate motor control processes but not with memory formation. 
    more » « less