skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles
Award ID(s):
1703052
NSF-PAR ID:
10188028
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Carbon
Volume:
167
Issue:
C
ISSN:
0008-6223
Page Range / eLocation ID:
559 to 574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples. 
    more » « less
  2. null (Ed.)