Membrane reactors (MR) are known for their ability to improve the selectivity and yield of chemical reactions. In this paper, a novel high-pressure MR employing a liquid sweep was applied to the methanol synthesis (MeS) reaction, aiming to increase the per single-pass conversion. For carrying-out the reaction, an asymmetric ceramic membrane was modified with a silylating agent in order to render its pore surface hydrophobic. A commercial MeS catalyst was used for the reaction, loaded in the MR shell-side, while the tube-side was swept with a high boiling point organic solvent with high solubility towards methanol. The membrane reactor was studied under a variety of experimental conditions (different pressures, temperatures, space times, and liquid sweep flow rates) and showed improved carbon conversion when compared to the conventional packed-bed reactor operating under the same conditions.
more »
« less
EXPERIMENTAL INVESTIGATION OF THE APPLICATION OF IONIC LIQUIDS TO METHANOL SYNTHESIS IN MEMBRANE REACTORS
In this study a high-pressure membrane reactor (MR) was employed to carry-out the methanol synthesis (MeS) reaction. Syngas was fed into the MR shell-side where a commercial MeS catalyst was used, while the tube-side is swept with a high boiling point liquid with good solubility towards methanol. A mesoporous alumina ceramic membrane was utilized, after its surface had been modified to be rendered more hydrophobic. The efficiency of the MR was investigated under a variety of experimental conditions (different pressures, temperatures, sweep liquid flow rates, and types of sweep liquids). The results reveal improved per single-pass carbon conversions when compared to the conventional packed-bed reactor. An ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) was utilized in the MR as the sweep liquid. The experimental results are compared to those previously reported by our Group (Li and Tsotsis, J. Membrane Sci., 2019) while using a conventional petroleum-derived solvent as sweep liquid, tetraethylene glycol dimethyl ether (TGDE). Enhanced carbon conversion (over the petroleum-derived solvent) was obtained using the IL.
more »
« less
- Award ID(s):
- 1705180
- PAR ID:
- 10188053
- Date Published:
- Journal Name:
- Industrial engineering chemistry research
- Volume:
- 58
- ISSN:
- 0888-5885
- Page Range / eLocation ID:
- 11811-11820
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, the solubility properties of the ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) were studied using a high-pressure, high-temperature set-up employing the pressure-drop technique. [EMIM][BF4] was selected for study because it is used as the sweep liquid in a membrane reactor (MR)-based methanol synthesis (MR-MeS) process recently proposed and studied by our group. The MR-MeS studies indicated high methanol (MeOH) solubilities in the IL under typical MeS reaction conditions, which then motivated this study to measure such solubilities directly under non-reactive conditions to validate the findings of the MR study. In addition, during the MR-MeS studies a concern existed about the solubility of CO2 in [EMIM][BF4], since it is a reactant in the MeS process and its dissolution in the sweep liquid would be detrimental for reactor performance. Studies, therefore, were also carried out to investigate the solubility of CO2, in addition to MeOH, in the IL. Our investigation indicates that though CO2 solubilities in the [EMIM][BF4] are high at room temperature, they become negligible at the typical MeS operating conditions (i.e., temperatures above 200 ⁰C).more » « less
-
null (Ed.)Biomass conversion to alcohols using supercritical methanol depolymerization and hydrodeoxygenation (SCM-DHO) with CuMgAl mixed metal oxide is a promising process for biofuel production. We demonstrate how maple wood can be converted at high weight loadings and product concentrations in a batch and a semi-continuous reactor to a mixture of C 2 –C 10 linear and cyclic alcohols. Maple wood was solubilized semi-continuously in supercritical methanol and then converted to a mixture of C 2 –C 9 alcohols and aromatics over a packed bed of CuMgAlO x catalyst. Up to 95 wt% of maple wood can be solubilized in the methanol by using four temperature holds at 190, 230, 300, and 330 °C. Lignin was solubilized at 190 and 230 °C to a mixture of monomers, dimers, and trimers while hemicellulose and cellulose solubilized at 300 and 330 °C to a mixture of oligomeric sugars and liquefaction products. The hemicellulose, cellulose, and lignin were converted to C 2 –C 10 alcohol fuel precursors over a packed bed of CuMgAlO x catalyst with 70–80% carbon yield of the entire maple wood. The methanol reforming activity of the catalyst decreased by 25% over four beds of biomass, which corresponds to 5 turnovers for the catalyst, but was regenerable after calcination and reduction. In batch reactions, maple wood was converted at 10 wt% in methanol with 93% carbon yield to liquid products. The product concentration can be increased to 20 wt% by partially replacing the methanol with liquid products. The yield of alcohols in the semi-continuous reactor was approximately 30% lower than in batch reactions likely due to degradation of lignin and cellulose during solubilization. These results show that solubilization of whole biomass can be separated from catalytic conversion of the intermediates while still achieving a high yield of products. However, close contact of the catalyst and the biomass during solubilization is critical to achieve the highest yields and concentration of products.more » « less
-
Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties. In this study, a series of IL-functionalized cellulose derivatives with variations in pendant alkyl chain length, counteranions, and degrees of substitution were synthesized in order to explore structure-property relationships. Emphasis was placed on investigating morphological, thermal, and ionic conductivity changes, hypothesizing that materials synthesized with longer alkyl chains would exhibit increased backbone-to-backbone spacing, thereby lowering the glass transition temperature, and enhancing ionic conductivity. A variety of characterization techniques were used for this investigation, including nuclear magnetic resonance spectroscopy (NMR), elemental analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray scattering, and dielectric relaxation spectroscopy (DRS). The findings reveal a link between longer alkyl chain lengths, expanded backbone-backbone spacing, and side chain interdigitation. Within each set of samples, heightened ionic conductivity was observed with the introduction of bulkier, less coordinating anions, underscoring the significant influence of counteranion size.more » « less
-
Abstract Bi‐continuous jammed emulsion (bijel) membrane reactors, integrating simultaneous reaction and separation, offer a promising avenue for enhancing membrane reactor processes. In this study, we present a comprehensive macroscopic‐scale physicochemical model for tubular bijel membrane reactors and a numerical solution strategy for solving the governing partial differential equations. The model captures the co‐continuous network of two immiscible phases stabilized by nanoparticles at the liquid–liquid interface. We present the derivation of model equations and an efficient numerical solution strategy. The model is validated with experimental results from a conventional enzymatic biphasic membrane reactor for oleuropein hydrolysis, already reported in the literature. Simulation results indicate accurate prediction of reactor behavior, highlighting the potential superiority of bijel membrane reactors over current technologies. This research contributes a valuable tool for scale‐up, design, and optimization of bijel membrane reactors, filling a critical gap in this emerging field.more » « less
An official website of the United States government

