skip to main content

Title: Production of renewable alcohols from maple wood using supercritical methanol hydrodeoxygenation in a semi-continuous flowthrough reactor
Biomass conversion to alcohols using supercritical methanol depolymerization and hydrodeoxygenation (SCM-DHO) with CuMgAl mixed metal oxide is a promising process for biofuel production. We demonstrate how maple wood can be converted at high weight loadings and product concentrations in a batch and a semi-continuous reactor to a mixture of C 2 –C 10 linear and cyclic alcohols. Maple wood was solubilized semi-continuously in supercritical methanol and then converted to a mixture of C 2 –C 9 alcohols and aromatics over a packed bed of CuMgAlO x catalyst. Up to 95 wt% of maple wood can be solubilized in the methanol by using four temperature holds at 190, 230, 300, and 330 °C. Lignin was solubilized at 190 and 230 °C to a mixture of monomers, dimers, and trimers while hemicellulose and cellulose solubilized at 300 and 330 °C to a mixture of oligomeric sugars and liquefaction products. The hemicellulose, cellulose, and lignin were converted to C 2 –C 10 alcohol fuel precursors over a packed bed of CuMgAlO x catalyst with 70–80% carbon yield of the entire maple wood. The methanol reforming activity of the catalyst decreased by 25% over four beds of biomass, which corresponds to 5 turnovers for more » the catalyst, but was regenerable after calcination and reduction. In batch reactions, maple wood was converted at 10 wt% in methanol with 93% carbon yield to liquid products. The product concentration can be increased to 20 wt% by partially replacing the methanol with liquid products. The yield of alcohols in the semi-continuous reactor was approximately 30% lower than in batch reactions likely due to degradation of lignin and cellulose during solubilization. These results show that solubilization of whole biomass can be separated from catalytic conversion of the intermediates while still achieving a high yield of products. However, close contact of the catalyst and the biomass during solubilization is critical to achieve the highest yields and concentration of products. « less
; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Green Chemistry
Page Range or eLocation-ID:
8462 to 8477
Sponsoring Org:
National Science Foundation
More Like this
  1. The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.
  2. Lignin, while economically and environmentally beneficial, has had limited success in use in reinforcing carbon fibers due to harmful chemicals used in biomass pretreatment along with the limited physical interactions between lignin and polyacrylonitrile (PAN) during the spinning process. The focus of this study is to use lignin obtained from chemical-free oxidative biomass pretreatment (WEx) for blending with PAN at melt spinning conditions to produce carbon fiber precursors. In this study, the dynamic rheology of blending PAN with biorefinery lignin obtained from the WEx process is investigated with the addition of 1-butyl-3-methylimidazolium chloride as a plasticizer to address the current barriers of developing PAN/lignin carbon fiber precursors in the melt-spinning process. Lignin was esterified using butyric anhydride to reduce its hydrophilicity and to enhance its interactions with PAN. The studies indicate that butyration of the lignin (BL) increased non-Newtonian behavior and decreased thermo-reversibility of blends. The slope of the Han plot was found to be around 1.47 for PAN at 150 °C and decreased with increasing lignin concentrations as well as temperature. However, these blends were found to have higher elasticity and solution yield stress (47.6 Pa at 20%wt BL and 190 °C) when compared to pure PAN (5.8 Pamore »at 190 °C). The results from this study are significant for understanding lignin–PAN interactions during melt spinning for lower-cost carbon fibers.« less
  3. Subcritical hydrothermal liquefaction uses high temperatures (270-350°C) and high pressures (80-173 bar) to produce bio-crude oils that can be upgraded to liquid transportation fuels. In this study, two strains of Galdieria sulphuraria, an acidophilic, mixotrophic red microalgae, were cultivated on effluent from primary settling tanks at a municipal wastewater treatment plant. Samples were concentrated to 5 and 10 wt.% slurries after harvest and converted by hydrothermal liquefaction in a 1.8 L batch reactor. Reaction conditions included temperatures of 310, 330 and 350°C, and hold times of 5, 30 and 60 minutes. Yields and product properties were compared to those of hydrothermal liquefaction of Galdieria sulphuraria grown on media. Total oil yields were low (11-18 wt.%) and char yields were high (28-36 wt.%) compared to those from HTL of the algae grown on media (27-35 wt.% oil and 10-13 wt.% char), likely due to the higher ash content and lower lipid content of the algae grown on wastewater. The bio-crude oil, char, and aqueous phase samples were characterized to complete mass, energy and nutrient balances to characterize the tradeoffs in the algae growth and conversion systems for energy and nutrient recovery.
  4. Abstract. There are many fuels used for domestic purposes in east Africa, producing a significant atmospheric burden of the resulting aerosols, which includes biomass burning particles. However, the aerosol physicochemical properties are poorly understood. Here, the combustion of eucalyptus, acacia, and olive fuels was performed at 500 and 800 ∘C in a tube furnace, followed by immediate filter collection for fresh samples or introduction into a photochemical chamber to simulate atmospheric photochemical aging under the influence of anthropogenic emissions. The aerosol generated in the latter experiment was collected onto filters after 12 h of photochemical aging. 500 and 800 ∘C were selected to simulate smoldering and flaming combustion, respectively, and to cover a range of combustion conditions. Methanol extracts from Teflon filters were analyzed by ultra-performance liquid chromatography interfaced to both a diode array detector and an electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer (UPLC/DAD-ESI-HR-QTOFMS) to determine the light absorption properties of biomass burning organic aerosol constituents chemically characterized at the molecular level. Few chemical or UV–visible (UV: ultraviolet) differences were apparent between samples for the fuels when combusted at 800 ∘C. Differences in single-scattering albedo (SSA) between fresh samples at this temperature were attributed to compounds not captured in this analysis, with eucalyptol being one suspectedmore »missing component. For fresh combustion at 500 ∘C, many species were present; lignin pyrolysis and distillation products are more prevalent in eucalyptus, while pyrolysis products of cellulose and at least one nitro-aromatic species were more prevalent in acacia. SSA trends areconsistent with this, particularly if the absorption of those chromophoresextends to the 500–570 nm region. Upon aging, both show that resorcinolor catechol was removed to the highest degree, and both aerosol types weredominated by loss of pyrolysis and distillation products, though they differed in the specific compounds being consumed by the photochemical aging process.« less
  5. The movement to transfer from petroleum-based products and materials to renewables does not necessarily have to bypass the use of oil. A new type of “black-gold” is readily abundant from the earth’s most abundant source of aromatic carbon: lignin. While fractionation of petroleum yields fuels and chemicals for a diverse set of industries, lignin fractionation using targeted catalysts has demonstrated the ability to generate monomers and oligomers rich in functional groups for polymer synthesis. This study explores the use of lignin-oil, generated from reductive catalytic fractionation of popular wood, to a hydroxyl-rich mixture of aromatics that is used to synthesize a thermoplastic non-isocyanate polyurethane. The lignin-oil is first converted to a cyclocarbonated derivative using a benign synthetic sequence and further polymerized with a diamine to yield the non-isocyanate TPU. While more work is underway to optimize the reaction conditions and meet typical mechanical properties of commercial materials, initial analysis shows thermoplastic behavior and flexible properties consistent with traditional thermoplastic polyurethanes.