skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigation of Coherence Time of a Nitrogen-Vacancy Center in Diamond Created by a Low-Energy Nitrogen Implantation
Award ID(s):
1611134 1508661
PAR ID:
10188227
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Applied Magnetic Resonance
Volume:
48
Issue:
6
ISSN:
0937-9347
Page Range / eLocation ID:
571 to 577
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Technical best management practices are the dominant approach promoted to mitigate agriculture’s significant contributions to environmental degradation. Yet very few social science studies have examined how farmers actually use these practices. This study focuses on the outcomes of farmers’ technical best management practice adoption related to synthetic nitrogen fertilizer management in the context of Midwestern corn agriculture in the United States. Moving beyond predicting the adoption of nitrogen best management practices, I use structural equation modeling and data from a sample of over 2500 farmers to analyze how the number of growing season applications a farmer uses influences the rate at which synthetic nitrogen is applied at the field-level. I find that each additional application of N during the growing season is associated with an average increase of 2.4 kg/ha in farmers’ average N application rate. This result counters expectation for the outcome of this practice and may suggest that structural pressures are leading farmers to use additional growing season applications to ensure sufficiently high N rates, rather than allowing them to reduce rates. I conclude by discussing the implication of this study for future research and policy. 
    more » « less
  2. Nitrogen (N) fertilization has been one of the main practices used to increase yield of agricultural crops worldwide. In developed countries, N supplementation in agriculture has increased by more than 120% between the 1960s and 2020. It is estimated that N applications will continue to rise as world population is expected to grow by 3 billion people within the next 80 years. Moreover, a 56% increase in crop yield will be needed to sustain the predicted population growth. However, pollution by excess N runoff from agriculture remains a global concern. A holistic approach is thus needed to integrate knowledge of plant nitrogen use efficiency with management practices. 
    more » « less
  3. Impurity-helium condensates (IHCs) formed by injecting the discharge products of gaseous mixtures of helium atoms and nitrogen molecules into bulk superfluid 4He at temperature 1.5 K, were studied by X-band electron spin resonance. IHCs consists of collections of N2 nanoclusters which form aerogel-like structure inside bulk HeII. It was found that N2 nanoclusters have a two shell structure, an outer shell which contains high concentration of stabilized N atoms and an interior shell with lower concentrations of N atoms. In this paper, we have studied the dependence of the shell structure of the N2 nanoclusters which compose the IHCs by varying the ratio of nitrogen to helium in the prepared gas mixture from 0.06 to 1%. The highest local concentration of N atoms in nanoclusters (1.2 ⋅ 1021 cm−3 ) was observed in the sample prepared from the gas mixture containing the lowest nitrogen admixture (0.06%). Additionally, the evolution of nanocluster structure was studied as the samples were drained of liquid helium (T ≤ 3.5 K) and warmed beyond the point of explosive recombination (3.5 K ≤ T ≤ 6.5 K). 
    more » « less