skip to main content


Title: Hollow metal halide perovskite nanocrystals with efficient blue emissions
Metal halide perovskite nanocrystals (NCs) have emerged as new-generation light-emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g., platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectrum. Despite remarkable advances in the field of perovskite NCs, many nanostructures in inorganic NCs have not yet been realized in metal halide perovskites, and producing highly efficient blue-emitting perovskite NCs remains challenging and of great interest. Here, we report the discovery of highly efficient blue-emitting cesium lead bromide (CsPbBr 3 ) perovskite hollow NCs. By facile solution processing of CsPbBr 3 precursor solution containing ethylenediammonium bromide and sodium bromide, in situ formation of hollow CsPbBr 3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effect results in color tuning of CsPbBr 3 NCs from green to blue, with high PLQEs of up to 81%.  more » « less
Award ID(s):
1912911 1709116
NSF-PAR ID:
10188336
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
17
ISSN:
2375-2548
Page Range / eLocation ID:
eaaz5961
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metal halide perovskite nanocrystals (NCs) have emerged as highly promising light emitting materials for various applications, ranging from perovskite light‐emitting diodes (PeLEDs) to lasers and radiation detectors. While remarkable progress has been achieved in highly efficient and stable green, red, and infrared perovskite NCs, obtaining efficient and stable blue‐emitting perovskite NCs remains a great challenge. Here, a facile synthetic approach for the preparation of blue emitting CsPbBr3nanoplatelets (NPLs) with treatment by an organic sulfate is reported, 2,2‐(ethylenedioxy) bis(ethylammonium) sulfate (EDBESO4), which exhibit remarkably enhanced photoluminescence quantum efficiency (PLQE) and stability as compared to pristine CsPbBr3NPLs coated with oleylamines. The PLQE is improved from ≈28% for pristine CsPbBr3NPLs to 85% for EDBESO4treated CsPbBr3NPLs. Detailed structural characterizations reveal that EDBESO4treatment leads to surface passivation of CsPbBr3NPLs by both EDBE2+and SO42–ions, which helps to prevent the coalescence of NPLs and suppress the degradation of NPLs. A simple proof‐of‐concept device with emission peaked at 462 nm exhibits an external quantum efficiency of 1.77% with a luminance of 691 cd m−2and a half‐lifetime of 20 min, which represents one of the brightest pure blue PeLEDs based on NPLs reported to date.

     
    more » « less
  2. Abstract

    The all‐inorganic metal halide perovskite CsPbX3(X = Cl, Br, and I) has received extensive attention in the field of white light‐emitting diodes (WLEDs) due to its high luminous intensity and high color purity. However, the shortcoming of poor stability directly affects the luminous performance of the WLED devices and reduces their luminous efficiency, which has become an urgent problem to be solved. Here, three‐color lead halide perovskite phosphors (blue‐emitting CsPbBr3synthesized at 20 °C (CPB‐20), green‐emitting CsPbBr3‐80 (CPB‐80)/CsPbBr3:SCN(CPB:SCN), and red‐emitting PEA2PbBr4(PPB)/PEA2PbBr4:Mn2+(PPB:Mn2+)) with higher stability and luminous intensity are simultaneously prepared and applied in WLEDs. Density functional theory is used to optimize the structures of CsPbBr3and PEA2PbBr4, and to calculate the work function, optical properties, and charge density difference. Not only the WLED devices with three‐color lead halide perovskite phosphors are constructed, but also WLED devices from warm white to cold white are realized by tuning the ratio of the different emissions, and a superior color quality (color rendering index of 96) and ideal correlated color temperature (CCT of 9376 K) are achieved. This work will set the stage for exploring low‐cost, environmentally friendly, high‐performance WLEDs.

     
    more » « less
  3. Abstract

    Blue electroluminescence is highly desired for emerging light‐emitting devices for display applications and optoelectronics in general. However, saturated, efficient, and stable blue emission has been challenging to achieve, particularly in mixed‐halide perovskites, where intrinsic ion motion and halide segregation compromises spectral purity. Here, CsPbBr3−xClxperovskites, polyelectrolytes, and a salt additive are leveraged to demonstrate pure blue emission from single‐layer light‐emitting electrochemical cells (LECs). The electrolytes transport the ions from salt additives, enhancing charge injection and stabilizing the inherent perovskite emissive lattice for highly pure and sustained blue emission. Substituting Cl into CsPbBr3tunes the perovskite luminescence from green through blue. Sky blue and saturated blue devices produce International Commission on Illumination coordinates of (0.105, 0.129) and (0.136, 0.068), respectively, with the latter meeting the US National Television Committee standard for the blue primary. Likewise, maximum luminances of 2900 and 1000 cd m−2, external quantum efficiencies (EQEs) of 4.3% and 3.9%, and luminance half‐lives of 5.7 and 4.9 h are obtained for sky blue and saturated blue devices, respectively. Polymer and LiPF6inclusion increases photoluminescence efficiency, suppresses halide segregation, induces thin‐film smoothness and uniformity, and reduces crystallite size. Overall, these devices show superior performance among blue perovskite light‐emitting diodes (PeLEDs) and general LECs.

     
    more » « less
  4. Abstract

    All‐inorganic lead halide perovskite nanocrystals (NCs) have great optoelectronic properties with promising applications in light‐emitting diodes (LEDs), lasers, photodetectors, solar cells, and photocatalysis. However, the intrinsic toxicity of Pb and instability of the NCs impede their broad applications. Shell‐coating is an effective method for enhanced environmental stability while reducing toxicity by choosing non‐toxic shell materials such as metal oxides, polymers, silica, etc. However, multiple perovskite NCs can be encapsulated within the shell material and a uniform epitaxial‐type shell growth of well‐isolated NCs is still challenging. In this work, lead‐free vacancy‐ordered double perovskite Cs2SnX6(X = Cl, Br, and I) shells are epitaxially grown on the surface of CsPbX3NCs by a hot‐injection method. The effectiveness of the non‐toxic double perovskite shell protection is demonstrated by the enhanced environmental and phase stability against UV illumination and water. In addition, the photoluminescence quantum yields (PL QYs) increase for the CsPbCl3and CsPbBr3NCs after shelling because of the type I band alignment of the core/shell materials, while enhanced charge transport properties obtained from CsPbI3/Cs2SnI6core/shell NCs are due to the efficient charge separation in the type II core/shell band alignment.

     
    more » « less
  5. Metal-halide perovskites, in particular their nanocrystal forms, have emerged as a new generation of light-emitting materials with exceptional optical properties, including narrow emissions covering the whole visible region with high photoluminescence quantum efficiencies of up to near-unity. Remarkable progress has been achieved over the last few years in the areas of materials development and device integration. A variety of synthetic approaches have been established to precisely control the compositions and microstructures of metal-halide perovskite nanocrystals (NCs) with tunable bandgaps and emission colors. The use of metal-halide perovskite NCs as active materials for optoelectronic devices has been extensively explored. Here, we provide a brief overview of recent advances in the development and application of metal-halide perovskite NCs. From color tuning via ion exchange and manipulation of quantum size effects, to stability enhancement via surface passivation, new chemistry for materials development is discussed. In addition, processes in optoelectronic devices based on metal-halide perovskite NCs, in particular, light-emitting diodes and radiation detectors, will be introduced. Opportunities for future research in metal-halide perovskite NCs are provided as well. 
    more » « less