skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Springtime Export of Arctic Sea Ice Influences Phytoplankton Production in the Greenland Sea
Abstract Climate model projections suggest a substantial decrease of sea ice export into the outflow areas of the Arctic Ocean over the 21st century. Fram Strait, located in the Greenland Sea sector, is the principal gateway for ice export from the Arctic Ocean. The consequences of lower sea ice flux through Fram Strait on ocean dynamics and primary production in the Greenland Sea remain unknown. By using the most recent 16 years (2003–2018) of satellite imagery available and hydrographic in situ observations, the role of exported Arctic sea ice on water column stratification and phytoplankton production in the Greenland Sea is evaluated. Years with high Arctic sea ice flux through Fram Strait resulted in high sea ice concentration in the Greenland Sea, stronger water column stratification, and an earlier spring phytoplankton bloom associated with high primary production levels. Similarly, years with low Fram Strait ice flux were associated with a weak water column stratification and a delayed phytoplankton spring bloom. This work emphasizes that sea ice and phytoplankton production in subarctic “outflow seas” can be strongly influenced by changes occurring in the Arctic Ocean.  more » « less
Award ID(s):
1751363
PAR ID:
10375076
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
125
Issue:
3
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Declines in seasonal sea ice in polar regions have stimulated projections of how primary production has shifted in response to greater light penetration over a longer open water season. Despite the limitations of remotely sensed observations in an often cloudy environment, remote sensing data provide strong indications that surface chlorophyll biomass has increased (since 2000) as sea ice has declined in the Pacific Arctic region. We present here shipboard measurements of chlorophyll-a that have been made annually in July since 2000 from the Distributed Biological Observatory (DBO) stations in the Bering Strait region. This time series as well as shipboard observations made in other months since the late 1980s implicate complexities that intrude on a simple expectation that, as open water periods increase, the production and biomass of phytoplankton will increase predictably. These shipboard observations indicate that there have not been sharp increases in chlorophyll-a, for either maxima observed in the water column or integrated over the whole water column, at the DBO stations over a time-series extending for as long as 20 years coinciding with seasonal sea ice declines. On the other hand, biomass may be increasing in other months: we provide a shipboard confirmation of a fall bloom in October as wind mixing introduced nutrients back into the upper water column. The productive DBO stations may be at a high enough production already that additional enhancements in chlorophyll-a biomass should not be expected, but our time-series record does not exclude the possibility that additional enhanced production may be present in other areas outside the DBO station grid. These findings may also reflect limitations imposed by nutrient cycling and water column structure. The increasing freshwater component of waters flowing through the Bering Strait is likely associated with increased stratification that limits the potential change in biological production associated with decreases in seasonal sea ice persistence. 
    more » « less
  2. Li, Delei (Ed.)
    Decreased sea ice cover in the northern Bering Sea has altered annual phytoplankton phenology owing to an expansion of open water duration and its impact on ocean stratification. Limitations of satellite remote sensing such as the inability to detect bloom activity throughout the water column, under ice, and in cloudy conditions dictate the need for shipboard based measurements to provide more information on bloom dynamics. In this study, we adapted remote sensing land cover classification techniques to provide a new means to determine bloom stage from shipboard samples. Specifically, we used multiyear satellite time series of chlorophyll a to determine whether in-situ blooms were actively growing or mature (i.e., past-peak) at the time of field sampling. Field observations of chlorophyll a and pheophytin (degraded and oxidized chlorophyll products) were used to calculate pheophytin proportions, i.e., (Pheophytin/(Chlorophyll a + Pheophytin)) and empirically determine whether the bloom was growing or mature based on remotely sensed bloom stages. Data collected at 13 north Bering Sea stations each July from 2013–2019 supported a pheophytin proportion of 28% as the best empirical threshold to distinguish a growing vs. mature bloom stage. One outcome was that low vs. high sea ice years resulted in significantly different pheophytin proportions in July; in years with low winter-to-spring ice, more blooms with growing status were observed, compared to later stage, more mature blooms following springs with abundant seasonal sea ice. The detection of growing blooms in July following low ice years suggests that changes in the timing of the spring bloom triggers cascading effects on mid-summer production. 
    more » « less
  3. Arctic Ocean gateway fluxes play a crucial role in linking the Arctic with the global ocean and affecting climate and marine ecosystems. We reviewed past studies on Arctic–Subarctic ocean linkages and examined their changes and driving mechanisms. Our review highlights that radical changes occurred in the inflows and outflows of the Arctic Ocean during the 2010s. Specifically, the Pacific inflow temperature in the Bering Strait and Atlantic inflow temperature in the Fram Strait hit record highs, while the Pacific inflow salinity in the Bering Strait and Arctic outflow salinity in the Davis and Fram straits hit record lows. Both the ocean heat convergence from lower latitudes to the Arctic and the hydrological cycle connecting the Arctic with Subarctic seas were stronger in 2000–2020 than in 1980–2000. CMIP6 models project a continuing increase in poleward ocean heat convergence in the 21st century, mainly due to warming of inflow waters. They also predict an increase in freshwater input to the Arctic Ocean, with the largest increase in freshwater export expected to occur in the Fram Strait due to both increased ocean volume export and decreased salinity. Fram Strait sea ice volume export hit a record low in the 2010s and is projected to continue to decrease along with Arctic sea ice decline. We quantitatively attribute the variability of the volume, heat, and freshwater transports in the Arctic gateways to forcing within and outside the Arctic based on dedicated numerical simulations and emphasize the importance of both origins in driving the variability. 
    more » « less
  4. Abstract High‐resolution glider sampling in the southwestern Ross Sea revealed an extensive phytoplankton bloom in austral summer 2022–2023 that persisted for over one month and extended through the upper 100 m of the water column. The temporal mean euphotic‐zone chlorophyll concentration was 20.38.5 , six to nine times higher than average summer Ross Sea concentrations. The bloom was likely initially dominated byPhaeocystis, favored over diatoms due to low light and high iron availability. Our observations are consistent with an ice‐edge bloom likely fueled by iron supply and enhanced stratification from late sea‐ice melt during an anomalously high ice‐covered summer. Photoacclimation to particularly low light conditions might have enhanced Chl‐a fluorescence. In the Ross Sea, the most productive region in the Southern Ocean, understanding the drivers of this extreme bloom is crucial for predicting potential impacts of the changing climate on primary production rates and carbon sequestration. 
    more » « less
  5. Abstract The Arctic has undergone dramatic changes in sea ice cover and the hydrologic cycle, both of which strongly impact the freshwater storage in, and export from, the Arctic Ocean. Here we analyze Arctic freshwater storage and fluxes in seven climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and assess their performance over the historical period (1980–2000) and in two future emissions scenarios, SSP1‐2.6 and SSP5‐8.5. Similar to CMIP5, substantial differences exist between the models' Arctic mean states and the magnitude of their 21st century storage and flux changes. In the historical simulation, most models disagree with observations over 1980–2000. In both future scenarios, the models show an increase in liquid freshwater storage and a reduction in solid storage and fluxes through the major Arctic gateways (Bering Strait, Fram Strait, Davis Strait, and the Barents Sea Opening) that is typically larger for SSP5‐8.5 than SSP1‐2.6. The liquid fluxes are driven by both volume and salinity changes, with models exhibiting a change in sign (relative to 1980–2000) of the freshwater flux through the Barents Sea Opening by mid‐century, little change in the Bering Strait flux, and increased export from the remaining straits by the end of the 21st century. In the straits west of Greenland (Nares, Barrow, and Davis straits), the models disagree on the behavior of the liquid freshwater export in the early‐to‐mid 21st century due to differences in the magnitude and timing of a simulated decrease in the volume flux. 
    more » « less