skip to main content

Title: Reaction engineering implications of cellulose crystallinity and water-promoted recrystallization
Mechanical decrystallization and water-promoted recrystallization of cellulose were studied to understand the effects of cellulose crystallinity on reaction engineering models of its acid-catalyzed hydrolysis. Microcrystalline cellulose was ball-milled for different periods of time, which decreased its crystallinity and increased the glucose yield obtained from acid hydrolysis treatment. Crystallinity increased after acid hydrolysis treatment, which has previously been explained in terms of rapid hydrolysis of amorphous cellulose, despite conflicting evidence of solvent promoted recrystallization. To elucidate the mechanism, decrystallized samples were subjected to various non-hydrolyzing treatments involving water exposure. Interestingly, all non-hydrolyzing hydrothermal treatments resulted in recovery of crystallinity, including a treatment consisting of heat-up and quenching that was selected as a way to estimate the crystallinity at the onset of hydrolysis. Therefore, the proposed mechanism involving rapid hydrolysis of amorphous cellulose must be incomplete, since the recrystallization rate of amorphous cellulose is greater than the hydrolysis rate. Several techniques (solid-state nuclear magnetic resonance, X-ray diffraction, and Raman spectroscopy) were used to establish that water contact promotes conversion of amorphous cellulose to a mixture of crystalline cellulose I and cellulose II. Crystallite size may also be reduced by the decrystallization-recrystallization treatment. Ethanolysis was used to confirm that the reactivity of the more » cellulose I/cellulose II mixture is distinct from that of truly amorphous cellulose. These results strongly point to a revised, more realistic model of hydrolysis of mechanically decrystallized cellulose, involving recrystallization and hydrolysis of the cellulose I/cellulose II mixture. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Green Chemistry
Page Range or eLocation-ID:
5541 to 5555
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016More>>
  2. Zeolites (ZSM-5 and Beta) with different SiO2/Al2O3 ratios were synthesized as solid acids for hydrolyzing cellulose in an inorganic ionic liquid system (lithium bromide trihydrate solution, LBTH) under mild conditions. The results indicated that the texture properties of zeolite had little effect on catalytic activity, while acidity of zeolite was crucial to the cellulose hydrolysis. In the LBTH system, H-form zeolites released H+ into the solution from their acid sites via ion-exchange with Li+, which hydrolyzed the cellulose already dissolved. This unique homogeneous hydrolysis mechanism was the primary reason for the excellent performance of the zeolites in catalyzing cellulose hydrolysismore »in the LBTH system. It was found cellulose could be completely hydrolyzed to glucose and oligoglucan by 2% (w/w on cellulose) zeolite at 140 °C within 3 h with a single-pass glucose yield 61%. The zeolites could be recovered with 50% initial catalytic activity after regeneration and reused with stable catalytic activity.« less
  3. Here, we report a novel ammonia : ammonium salt solvent based pretreatment process that can rapidly dissolve crystalline cellulose into solution and eventually produce highly amorphous cellulose under near-ambient conditions. Pre-activating the cellulose I allomorph to its ammonia–cellulose swollen complex (or cellulose III allomorph) at ambient temperatures facilitated rapid dissolution of the pre-activated cellulose in the ammonia-salt solvent ( i.e. , ammonium thiocyanate salt dissolved in liquid ammonia) at ambient pressures. For the first time in reported literature, we used time-resolved in situ neutron scattering methods to characterize the cellulose polymorphs structural modification and understand the mechanism of crystalline cellulose dissolution intomore »a ‘molecular’ solution in real-time using ammonia-salt solvents. We also used molecular dynamics simulations to provide insight into solvent interactions that non-covalently disrupted the cellulose hydrogen-bonding network and understand how such solvents are able to rapidly and fully dissolve pre-activated cellulose III. Importantly, the regenerated amorphous cellulose recovered after pretreatment was shown to require nearly ∼50-fold lesser cellulolytic enzyme usage compared to native crystalline cellulose I allomorph for achieving near-complete hydrolytic conversion into soluble sugars. Lastly, we provide proof-of-concept results to further showcase how such ammonia-salt solvents can pretreat and fractionate lignocellulosic biomass like corn stover under ambient processing conditions, while selectively co-extracting ∼80–85% of total lignin, to produce a highly digestible polysaccharide-enriched feedstock for biorefinery applications. Unlike conventional ammonia-based pretreatment processes ( e.g. , Ammonia Fiber Expansion or Extractive Ammonia pretreatments), the proposed ammonia-salt process can operate at near-ambient conditions to greatly reduce the pressure/temperature severity necessary for conducting effective ammonia-based pretreatments on lignocellulose.« less
  4. The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysismore »likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant data, product identification confirms that a unimolecular specific acid-catalyzed mechanism is responsible for organic nitrate hydrolysis under acidic conditions. The free energies and enthalpies of the isobutyl nitrate hydrolysis intermediates and products were calculated using a hybrid density functional (ωB97X-V) to support the proposed mechanisms. These findings provide valuable information regarding the organic nitrate hydrolysis mechanism and its contribution to the fate of atmospheric NOx, aerosol phase processing, and BSOA composition.« less
  5. Abstract. This study presents a characterization of the hygroscopic growth behaviour and effects of different inorganic seed particles on the formation of secondary organic aerosols (SOAs) from the dark ozone-initiated oxidation of isoprene at low NOx conditions. We performed simulations of isoprene oxidation using a gas-phase chemical reaction mechanism based onthe Master Chemical Mechanism (MCM) in combination with an equilibriumgas–particle partitioning model to predict the SOA concentration. Theequilibrium model accounts for non-ideal mixing in liquid phases, includingliquid–liquid phase separation (LLPS), and is based on the AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients) model for mixture non-ideality and the EVAPORATIONmore »(Estimation of VApour Pressure of ORganics, Accounting for Temperature,Intramolecular, and Non-additivity effects) model for pure compound vapourpressures. Measurements from the Cosmics Leaving Outdoor Droplets (CLOUD)chamber experiments, conducted at the European Organization for NuclearResearch (CERN) for isoprene ozonolysis cases, were used to aid inparameterizing the SOA yields at different atmospherically relevanttemperatures, relative humidity (RH), and reacted isoprene concentrations. To represent the isoprene-ozonolysis-derived SOA, a selection of organicsurrogate species is introduced in the coupled modelling system. The modelpredicts a single, homogeneously mixed particle phase at all relativehumidity levels for SOA formation in the absence of any inorganic seedparticles. In the presence of aqueous sulfuric acid or ammonium bisulfateseed particles, the model predicts LLPS to occur below ∼ 80 % RH, where the particles consist of an inorganic-rich liquid phase andan organic-rich liquid phase; however, this includes significant amounts of bisulfate and water partitioned to the organic-rich phase. The measurements show an enhancement in the SOA amounts at 85 % RH, compared to 35 % RH, for both the seed-free and seeded cases. The model predictions of RH-dependent SOA yield enhancements at 85 % RH vs. 35 % RH are 1.80 for a seed-free case, 1.52 for the case with ammonium bisulfate seed, and 1.06 for the case with sulfuric acid seed. Predicted SOA yields are enhanced in the presence of an aqueous inorganic seed, regardless of the seed type (ammonium sulfate, ammonium bisulfate, or sulfuric acid) in comparison with seed-free conditions at the same RH level. We discuss the comparison of model-predicted SOA yields with a selection of other laboratory studies on isoprene SOA formation conducted at different temperatures and for a variety of reacted isoprene concentrations. Those studies were conducted at RH levels at or below 40 % with reported SOA mass yields ranging from 0.3 % up to 9.0 %, indicating considerable variations. A robust feature of our associated gas–particle partitioning calculations covering the whole RH range is the predicted enhancement of SOA yield at high RH (> 80 %) compared to low RH (dry) conditions, which is explained by the effect of particle water uptake and its impact on the equilibrium partitioning of all components.« less