Abstract Chlorinated plastics are part of the everyday lives of consumers and producers alike. They can be found in buildings, automobiles, fashion, packaging, and many other places. This prevalence makes them a considerable part of the plastic waste crisis. Interest in “upcycling” (as opposed to recycling) has grown recently to augment the possibilities of managing plastic waste. The advances made in plastic upcycling have focused on polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET) and polystyrene (PS) while chlorinated plastics, chiefly polyvinyl chloride (PVC), have received much less attention. The release of chlorine‐containing molecules during treatment of chlorinated plastic greatly complicates cross‐method upcycling, or even the treatment of plastic mixes containing chlorinated plastics. This review presents a case for extracting value from chlorinated plastics by highlighting appealing upcycling products made owing to, or despite, the C‐Cl bond via depolymerization, carbonization and modification. This article is protected by copyright. All rights reserved.
more »
« less
A single-step upcycling of PVC-containing municipal solid waste compositions for greener chemicals and clean solids as fuel or oil absorbent
Polyvinyl chloride (PVC) containing municipal solid waste (MSW) streams are difficult to recycle and mostly landfilled due to various detrimental effects PVC causes to waste recycling. In this work, a single-step upcycling of PVC-containing commingled wastes in tetrahydrofuran was investigated using cellulose, PVC, polyethylene (PE), polypropylene (PP), and polystyrene (PS) to model the wastes. During the co-conversion, in-situ produced HCl derived from PVC decomposition acted as an acid catalyst to selectively decompose cellulose into liquid mainly containing levoglucosan (LGA) and furfural. It was also found that the presence of PE, PP, and PS in the mixture synergistically enhanced the cellulose-derived monomer productions and increased the reaction rate for producing the monomers by suppressing secondary reactions of HCl in the solvent. The maximum LGA yield from co-conversion of cellulose, PVC, and PS was 35.4% after a 5 min reaction compared to the 31.7% obtained without PS in the mixture. In addition to converting cellulose to chemicals, PVC-derived polyaromatics and partly decomposed PE, PP, and PS were recovered as solids. The dechlorinated solids had higher heating values up to 46.11 MJ/kg, achieved by co-converting cellulose, PVC, and PP. When used as oil absorbents in water, the solid recovered from converting cellulose, PVC, and PE mixture showed the highest absorption capability. Overall, the presented approach offers a promising way for upcycling PVC-containing wastes in which PVC properties and its molecular structure are leveraged to enhance the conversion.
more »
« less
- PAR ID:
- 10469192
- Publisher / Repository:
- Science Direct
- Date Published:
- Journal Name:
- Journal of the Energy Institute
- Volume:
- 111
- Issue:
- C
- ISSN:
- 1743-9671
- Page Range / eLocation ID:
- 101405
- Subject(s) / Keyword(s):
- Cellulose, Polyvinyl chloride, Plastics, Levoglucosan, Furfural, Absorbent
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hydrodechlorination of poly(vinyl chloride) (PVC) directly to polyethylene (PE) represents a way to repurpose PVC waste, while avoiding toxic and/or corrosive byproducts that are produced at the end of life of PVC items. Prior studies identified a rhodium‐catalyzed route to hydrodechlorinate PVC to form PE products with sodium formate as a hydrogen source. While all chlorine could be removed to form PE‐like polymers, the reaction was slow and side reactions introduced undesirable cross‐links in the polymer product. In this work, mechanistic studies are pursued to improve catalytic activity for this method. Xantphos and diphenylphosphinoethane (DPPE) both support Rh(I) to promote this reaction to full conversion, effectively removing all chlorine from PVC samples, with Xantphos support providing the fastest metal catalysis for hydrodechlorination to date. However, side reactions to form cross‐links are present for both catalyst systems. Control studies suggest the proposed route for cross‐link formation also deactivates the Rh catalyst, indicating the cross‐link formation can also be the cause for the reaction to slow over time. Other reaction conditions were found to influence the selectivity between hydrodechlorination and cross‐link formation. These results introduce key catalyst design principles to improve methods for hydrodechlorination of PVC, allowing for sustainable repurposing of this toxic polymer waste.more » « less
-
In recent decades, the increased use of polyvinyl chloride (PVC) in industries and households has led to a surge in PVC waste pollution, which mandates developing solutions for the removal of waste PVC from the environment. We report upcycling, the conversion of waste material to a high-value-added product, of PVC-based products to electrospun (ES) fibers (mats). As two common PVC products, waste PVC pipe and waste PVC pool float were upcycled to ES fibers for water treatment. The fabrication process and fiber characteristics, such as morphology, surface charge, and mechanical strength of upcycled fibers, were studied and compared with the same fibers fabricated using research-grade (RG) PVC (commercial PVC powder). In addition, the effect of additives such as calcium carbonate in PVC waste products on the physicochemical properties of upcycled fibers was evaluated. The results showed that upcycling of waste PVC to ES fibers is feasible since the upcycled fibers showed similar or superior properties compared to their equivalent fibers from RG-PVC. Finally, the performance of upcycled fibers on the removal of dyes from the water was evaluated. The upcycled fibers from waste PVC pipes and pool float outperformed the RG PVC fibers in removing methylene blue from water by showing more than 97% removal efficiency. In addition, the upcycled PVC ES fibers showed more than 80% reusability after five adsorption−desorption cycles.more » « less
-
Plastic waste represents one of the most urgent environmental challenges facing humankind. Upcycling has been proposed to solve the low profitability and high market sensitivity of known recycling methods. Existing upcycling methods operate under energy-intense conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. Herein, we report a tandem degradation-upcycling strategy to exploit high-value chemicals from polystyrene (PS) waste with high selectivity. We first degrade PS waste to aromatics using ultraviolet (UV) light and then valorize the intermediate to diphenylmethane. Low-cost AlCl 3 catalyzes both the reactions of degradation and upcycling at ambient temperatures under atmospheric pressure. The degraded intermediates can advantageously serve as solvents for processing the solid plastic wastes, forming a self-sustainable circuitry. The low-value-input and high-value-output approach is thus substantially more sustainable and economically viable than conventional thermal processes, which operate at high-temperature, high-pressure conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. The cascade strategy is resilient to impurities from plastic waste streams and is generalizable to other high-value chemicals (e.g., benzophenone, 1,2-diphenylethane, and 4-phenyl-4-oxo butyric acid). The upcycling to diphenylmethane was tested at 1-kg laboratory scale and attested by industrial-scale techno-economic analysis, demonstrating sustainability and economic viability without government subsidies or tax credits.more » « less
-
Abstract Polystyrene (PS) is one of the least recycled large‐volume commodity plastics due to bulkiness of foam products and associated contaminants. PS recycling is also severely hampered by the lack of financial incentive, limited versatility, and poor selectivity of existing methods. To this end, herein we report a thermochemical recycling strategy of “degradation‐upcycling” to synthesize a library of high‐value aromatic chemicals from PS wastes with high versatility and selectivity. Two cascade reactions are selected to first degrade PS to benzene under mild temperatures, followed by the derivatization thereof utilizing a variety of acyl/alkyl and sulfinyl chloride additives. To demonstrate the versatility, nine ketones and sulfides of cosmetic and pharmaceutical relevance were prepared, including propiophenone, benzophenone, and diphenyl sulfide. The approach is also amenable to sophisticated upcycling reaction designs and can produce desired products stepwise. The facile and versatile approach will provide a scalable and profitable methodology for upcycling PS waste into value‐added chemicals.more » « less
An official website of the United States government

