skip to main content


This content will become publicly available on December 1, 2024

Title: A single-step upcycling of PVC-containing municipal solid waste compositions for greener chemicals and clean solids as fuel or oil absorbent
Polyvinyl chloride (PVC) containing municipal solid waste (MSW) streams are difficult to recycle and mostly landfilled due to various detrimental effects PVC causes to waste recycling. In this work, a single-step upcycling of PVC-containing commingled wastes in tetrahydrofuran was investigated using cellulose, PVC, polyethylene (PE), polypropylene (PP), and polystyrene (PS) to model the wastes. During the co-conversion, in-situ produced HCl derived from PVC decomposition acted as an acid catalyst to selectively decompose cellulose into liquid mainly containing levoglucosan (LGA) and furfural. It was also found that the presence of PE, PP, and PS in the mixture synergistically enhanced the cellulose-derived monomer productions and increased the reaction rate for producing the monomers by suppressing secondary reactions of HCl in the solvent. The maximum LGA yield from co-conversion of cellulose, PVC, and PS was 35.4% after a 5 min reaction compared to the 31.7% obtained without PS in the mixture. In addition to converting cellulose to chemicals, PVC-derived polyaromatics and partly decomposed PE, PP, and PS were recovered as solids. The dechlorinated solids had higher heating values up to 46.11 MJ/kg, achieved by co-converting cellulose, PVC, and PP. When used as oil absorbents in water, the solid recovered from converting cellulose, PVC, and PE mixture showed the highest absorption capability. Overall, the presented approach offers a promising way for upcycling PVC-containing wastes in which PVC properties and its molecular structure are leveraged to enhance the conversion.  more » « less
Award ID(s):
1803823 1826978
NSF-PAR ID:
10469192
Author(s) / Creator(s):
;
Publisher / Repository:
Science Direct
Date Published:
Journal Name:
Journal of the Energy Institute
Volume:
111
Issue:
C
ISSN:
1743-9671
Page Range / eLocation ID:
101405
Subject(s) / Keyword(s):
["Cellulose, Polyvinyl chloride, Plastics, Levoglucosan, Furfural, Absorbent"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Chlorinated plastics are part of the everyday lives of consumers and producers alike. They can be found in buildings, automobiles, fashion, packaging, and many other places. This prevalence makes them a considerable part of the plastic waste crisis. Interest in “upcycling” (as opposed to recycling) has grown recently to augment the possibilities of managing plastic waste. The advances made in plastic upcycling have focused on polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET) and polystyrene (PS) while chlorinated plastics, chiefly polyvinyl chloride (PVC), have received much less attention. The release of chlorine‐containing molecules during treatment of chlorinated plastic greatly complicates cross‐method upcycling, or even the treatment of plastic mixes containing chlorinated plastics. This review presents a case for extracting value from chlorinated plastics by highlighting appealing upcycling products made owing to, or despite, the C‐Cl bond via depolymerization, carbonization and modification.

    This article is protected by copyright. All rights reserved.

     
    more » « less
  2. Plastic waste represents one of the most urgent environmental challenges facing humankind. Upcycling has been proposed to solve the low profitability and high market sensitivity of known recycling methods. Existing upcycling methods operate under energy-intense conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. Herein, we report a tandem degradation-upcycling strategy to exploit high-value chemicals from polystyrene (PS) waste with high selectivity. We first degrade PS waste to aromatics using ultraviolet (UV) light and then valorize the intermediate to diphenylmethane. Low-cost AlCl 3 catalyzes both the reactions of degradation and upcycling at ambient temperatures under atmospheric pressure. The degraded intermediates can advantageously serve as solvents for processing the solid plastic wastes, forming a self-sustainable circuitry. The low-value-input and high-value-output approach is thus substantially more sustainable and economically viable than conventional thermal processes, which operate at high-temperature, high-pressure conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. The cascade strategy is resilient to impurities from plastic waste streams and is generalizable to other high-value chemicals (e.g., benzophenone, 1,2-diphenylethane, and 4-phenyl-4-oxo butyric acid). The upcycling to diphenylmethane was tested at 1-kg laboratory scale and attested by industrial-scale techno-economic analysis, demonstrating sustainability and economic viability without government subsidies or tax credits. 
    more » « less
  3. Abstract

    Polystyrene (PS) is one of the least recycled large‐volume commodity plastics due to bulkiness of foam products and associated contaminants. PS recycling is also severely hampered by the lack of financial incentive, limited versatility, and poor selectivity of existing methods. To this end, herein we report a thermochemical recycling strategy of “degradation‐upcycling” to synthesize a library of high‐value aromatic chemicals from PS wastes with high versatility and selectivity. Two cascade reactions are selected to first degrade PS to benzene under mild temperatures, followed by the derivatization thereof utilizing a variety of acyl/alkyl and sulfinyl chloride additives. To demonstrate the versatility, nine ketones and sulfides of cosmetic and pharmaceutical relevance were prepared, including propiophenone, benzophenone, and diphenyl sulfide. The approach is also amenable to sophisticated upcycling reaction designs and can produce desired products stepwise. The facile and versatile approach will provide a scalable and profitable methodology for upcycling PS waste into value‐added chemicals.

     
    more » « less
  4. Abstract

    Polystyrene (PS) is one of the least recycled large‐volume commodity plastics due to bulkiness of foam products and associated contaminants. PS recycling is also severely hampered by the lack of financial incentive, limited versatility, and poor selectivity of existing methods. To this end, herein we report a thermochemical recycling strategy of “degradation‐upcycling” to synthesize a library of high‐value aromatic chemicals from PS wastes with high versatility and selectivity. Two cascade reactions are selected to first degrade PS to benzene under mild temperatures, followed by the derivatization thereof utilizing a variety of acyl/alkyl and sulfinyl chloride additives. To demonstrate the versatility, nine ketones and sulfides of cosmetic and pharmaceutical relevance were prepared, including propiophenone, benzophenone, and diphenyl sulfide. The approach is also amenable to sophisticated upcycling reaction designs and can produce desired products stepwise. The facile and versatile approach will provide a scalable and profitable methodology for upcycling PS waste into value‐added chemicals.

     
    more » « less
  5. Abstract Background

    The increasing prevalence of plastic waste combined with the inefficiencies of mechanical recycling has inspired interest in processes that can convert these waste streams into value-added biomaterials. To date, the microbial conversion of plastic substrates into biomaterials has been predominantly limited to polyhydroxyalkanoates production. Expanding the capabilities of these microbial conversion platforms to include a greater diversity of products generated from plastic waste streams can serve to promote the adoption of these technologies at a larger scale and encourage a more sustainable materials economy.

    Results

    Herein, we report the development of a new strain ofPseudomonasbacteria capable of converting depolymerized polyethylene into high value bespoke recombinant protein products. Using hexadecane, a proxy for depolymerized polyethylene, as a sole carbon nutrient source, we optimized media compositions that facilitate robust biomass growth above 1 × 109 cfu/ml, with results suggesting the benefits of lower hydrocarbon concentrations and the use of NH4Cl as a nitrogen source. We genomically integrated recombinant genes for green fluorescent protein and spider dragline-inspired silk protein, and we showed their expression inPseudomonas aeruginosa, reaching titers of approximately 10 mg/L when hexadecane was used as the sole carbon source. Lastly, we demonstrated that chemically depolymerized polyethylene, comprised of a mixture of branched and unbranched alkanes, could be converted into silk protein byPseudomonas aeruginosaat titers of 11.3 ± 1.1 mg/L.

    Conclusion

    This work demonstrates a microbial platform for the conversion of a both alkanes and plastic-derived substrates to recombinant, protein-based materials. The findings in this work can serve as a basis for future endeavors seeking to upcycle recalcitrant plastic wastes into value-added recombinant proteins.

     
    more » « less