skip to main content


Title: Insights into solid acid catalysts for efficient cellulose hydrolysis to glucose: progress, challenges, and future opportunities
Solid acids as heterogeneous catalysts for cellulose hydrolysis have drawn increasing attention; however, current solid acids face challenges such as high catalyst loading (low catalytic activity), poor catalyst-substrate interaction, deficient hydrothermal stability, and unsatisfactory recyclability. This review critically discussed the recent efforts and progress in overcoming the issues of solid acids and developing high-performance solid acids for hydrolyzing cellulose. The key structural features of solid acids and their effects on the interactions with cellulose and cellulose hydrolysis were addressed in detail. Strategies and perspectives to enhance performance, hydrothermal stability and recyclability of solid acids were provided.  more » « less
Award ID(s):
1703519
NSF-PAR ID:
10192836
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Catalysis Reviews
ISSN:
0161-4940
Page Range / eLocation ID:
1 to 46
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Valorization of hydrochar, a solid byproduct from hydrothermal liquefaction (HTL) of anaerobically-digested agriculture wastes (digestates), requires fundamental knowledge of elemental speciation. This study investigated the effects of reaction temperatures (320–360 °C), digestate pH (3.5–8), and digestate cellulose-to-lignin ratios (0.2–1.8) on the speciation (chemical form) and composition of organics and inorganics in hydrochars produced during hydrothermal treatment. Quantitative X-ray diffraction (XRD) method was the primary technique used to characterize hydrochars. The comprehensive XRD pattern processing including the Rietveld refinement protocols demonstrated that the organic phase was comprised of mostly crystalline monocyclic, heterocyclic, and polycyclic aromatics with diverse aliphatic and aromatic substituents, while the inorganic mineral phase consisted of calcium-phosphates, magnesium-phosphates, calcium-carbonates, and magnesium-carbonates. XRD results were validated by the elemental yields of products and the distribution of chemical functionalities measured using solid-state nuclear magnetic resonance (NMR) spectroscopy. The characterization data were used to evaluate proposed mechanistic pathways using compositional analysis of biocrude and aqueous-phase coproducts. Mechanistic pathways developed in the study suggested that benzoic acids, phenols, benzaldehydes, phenolic aldehydes, α-dicarbonyls, and α-hydroxycarbonyls were responsible for the precipitation of organics through various reactions depending on operating conditions. Meanwhile, the formation of inorganic compounds appeared to be consistently represented by reactions including dehydration, hydrolysis, endergonic reduction, and structure rearrangement of native minerals in the digestates. This study provides basic knowledge needed to create and assess potential elemental speciation pathways. In addition, the results of the study facilitate the specification of process conditions to optimize targeted utilization routes of hydrochar for more economically-feasible and sustainable HTL processing. 
    more » « less
  2. Background:

    Polycarboxylic acids are of interest as simple mimics for cellulase enzyme catalyzed depolymerization of cellulose. In this study, DFT calculations were used to investigate the effect of structure on dicarboxylic acid organo-catalyzed hydrolysis of cellulose model compound D-cellobiose to D-glucose.

    Methods:

    Binding energy of the complex formed between D-cellobiose and acid (Ebind), as well as glycosidic oxygen to dicarboxylic acid closest acidic H distance were studied as key parameters affecting the turn over frequency of hydrolysis in water.

    Result:

    α-D-cellobiose - dicarboxylic acid catalyst down face approach showed high Ebind values for five of the six acids studied; indicating the favorability of down face approach. Maleic, cis-1,2-cyclohexane dicarboxylic, and phthalic acids with the highest catalytic activities showed glycosidic oxygen to dicarboxylic acid acidic H distances 3.5-3.6 Å in the preferred configuration.

    Conclusion:

    The high catalytic activities of these acids may be due to the rigid structure, where acid groups are held in a fixed geometry.

     
    more » « less
  3. Zeolites (ZSM-5 and Beta) with different SiO2/Al2O3 ratios were synthesized as solid acids for hydrolyzing cellulose in an inorganic ionic liquid system (lithium bromide trihydrate solution, LBTH) under mild conditions. The results indicated that the texture properties of zeolite had little effect on catalytic activity, while acidity of zeolite was crucial to the cellulose hydrolysis. In the LBTH system, H-form zeolites released H+ into the solution from their acid sites via ion-exchange with Li+, which hydrolyzed the cellulose already dissolved. This unique homogeneous hydrolysis mechanism was the primary reason for the excellent performance of the zeolites in catalyzing cellulose hydrolysis in the LBTH system. It was found cellulose could be completely hydrolyzed to glucose and oligoglucan by 2% (w/w on cellulose) zeolite at 140 °C within 3 h with a single-pass glucose yield 61%. The zeolites could be recovered with 50% initial catalytic activity after regeneration and reused with stable catalytic activity. 
    more » « less
  4. Mechanical decrystallization and water-promoted recrystallization of cellulose were studied to understand the effects of cellulose crystallinity on reaction engineering models of its acid-catalyzed hydrolysis. Microcrystalline cellulose was ball-milled for different periods of time, which decreased its crystallinity and increased the glucose yield obtained from acid hydrolysis treatment. Crystallinity increased after acid hydrolysis treatment, which has previously been explained in terms of rapid hydrolysis of amorphous cellulose, despite conflicting evidence of solvent promoted recrystallization. To elucidate the mechanism, decrystallized samples were subjected to various non-hydrolyzing treatments involving water exposure. Interestingly, all non-hydrolyzing hydrothermal treatments resulted in recovery of crystallinity, including a treatment consisting of heat-up and quenching that was selected as a way to estimate the crystallinity at the onset of hydrolysis. Therefore, the proposed mechanism involving rapid hydrolysis of amorphous cellulose must be incomplete, since the recrystallization rate of amorphous cellulose is greater than the hydrolysis rate. Several techniques (solid-state nuclear magnetic resonance, X-ray diffraction, and Raman spectroscopy) were used to establish that water contact promotes conversion of amorphous cellulose to a mixture of crystalline cellulose I and cellulose II. Crystallite size may also be reduced by the decrystallization-recrystallization treatment. Ethanolysis was used to confirm that the reactivity of the cellulose I/cellulose II mixture is distinct from that of truly amorphous cellulose. These results strongly point to a revised, more realistic model of hydrolysis of mechanically decrystallized cellulose, involving recrystallization and hydrolysis of the cellulose I/cellulose II mixture. 
    more » « less
  5. Abstract BACKGROUND

    Oils derived from plants, animal fats, and algae contain both saturated and unsaturated fatty acids. These fatty acids can be converted into liquid fuels and chemicals in the presence of active solid catalysts.

    RESULTS

    Nickel‐based catalysts were supported on mordenite via ion exchange synthesis and evaluated for the deoxygenation of stearic acid to diesel fuels. By tuning the synthesis pH, loadings of over 20 wt% Ni were obtained. Catalysts synthesized at pH 8.5 displayed the highest Ni loading and the highest activity for the decarboxylation/decarbonylation of stearic acid under inert nitrogen gas atmospheres, yielding 47% heptadecane. Characterization included scanning transmission electron microscopy‐energy‐dispersive spectroscopy (STEM‐EDS), X‐ray diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), inductively coupled plasma atomic emission spectroscopy (ICP‐AES), N2physisorption and thermogravimetric analysis (TGA), providing new insights into the recyclability of the catalyst. The observed loss of catalytic activity upon recycling was attributed to the agglomeration of Ni nanoparticles and the accumulation of carbonaceous coke.

    CONCLUSION

    This work demonstrates that Ni‐based catalysts supported on mordenite zeolite can effectively convert stearic acid into heptadecane. Yields to heptadecane were as high as 47%. Mechanistically, the reaction proceeds by decarboxylation and decarbonylation pathways. © 2019 Society of Chemical Industry

     
    more » « less