skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How kinesin waits for ATP affects the nucleotide and load dependence of the stepping kinetics
Conventional kinesin, responsible for directional transport of cellular vesicles, takes multiple nearly uniform 8.2-nm steps by consuming one ATP molecule per step as it walks toward the plus end of the microtubule (MT). Despite decades of intensive experimental and theoretical studies, there are gaps in the elucidation of key steps in the catalytic cycle of kinesin. How the motor waits for ATP to bind to the leading head is controversial. Two experiments using a similar protocol have arrived at different conclusions. One asserts that kinesin waits for ATP in a state with both the heads bound to the MT, whereas the other shows that ATP binds to the leading head after the trailing head detaches. To discriminate between the 2 scenarios, we developed a minimal model, which analytically predicts the outcomes of a number of experimental observable quantities (the distribution of run length, the distribution of velocity [ P ( v ) ], and the randomness parameter) as a function of an external resistive force (F) and ATP concentration ([T]). The differences in the predicted bimodality in P ( v ) as a function of F between the 2 models may be amenable to experimental testing. Most importantly, we predict that the F and [T] dependence of the randomness parameters differ qualitatively depending on the waiting states. The randomness parameters as a function of F and [T] can be quantitatively measured from stepping trajectories with very little prejudice in data analysis. Therefore, an accurate measurement of the randomness parameter and the velocity distribution as a function of load and nucleotide concentration could resolve the apparent controversy.  more » « less
Award ID(s):
1900093
PAR ID:
10188686
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
46
ISSN:
0027-8424
Page Range / eLocation ID:
23091 to 23099
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Molecular motors, kinesin and myosin, are dimeric consisting of two linked identical monomeric globular proteins. Fueled by the free energy generated by ATP hydrolysis, they walk on polar tracks (microtubule or filamentous actin) processively, which means that only one head detaches and executes a mechanical step while the other stays bound to the track. One motor head must regulate the chemical state of the other, referred to as “gating”, a concept that is still not fully understood. Inspired by experiments, showing that only a fraction of the energy from ATP hydrolysis is used to advance the kinesin motors against load, we demonstrate that the rest of the energy is associated with chemical transitions in the two heads. The coordinated chemical transitions involve communication between the two heads - a feature that characterizes gating. We develop a general framework, based on information theory and stochastic thermodynamics, and establish that gating could be quantified in terms of information flow between the motor heads. Applications to kinesin-1 and Myosin V show that information flow, with positive cooperativity, at external resistive loads less than a critical value, F c . When force exceeds F c , effective information flow ceases. Interestingly, F c , which is independent of the input energy generated through ATP hydrolysis, coincides with the force at which the probability of backward steps starts to increase. Our findings suggest that transport efficiency is optimal only at forces less than F c , which implies that these motors must operate at low loads under in vivo conditions. 
    more » « less
  2. Hydrodynamic theories effectively describe many-body systems out of equilibrium in terms of a few macroscopic parameters. However, such parameters are difficult to determine from microscopic information. Seldom is this challenge more apparent than in active matter, where the hydrodynamic parameters are in fact fields that encode the distribution of energy-injecting microscopic components. Here, we use active nematics to demonstrate that neural networks can map out the spatiotemporal variation of multiple hydrodynamic parameters and forecast the chaotic dynamics of these systems. We analyze biofilament/molecular-motor experiments with microtubule/kinesin and actin/myosin complexes as computer vision problems. Our algorithms can determine how activity and elastic moduli change as a function of space and time, as well as adenosine triphosphate (ATP) or motor concentration. The only input needed is the orientation of the biofilaments and not the coupled velocity field which is harder to access in experiments. We can also forecast the evolution of these chaotic many-body systems solely from image sequences of their past using a combination of autoencoders and recurrent neural networks with residual architecture. In realistic experimental setups for which the initial conditions are not perfectly known, our physics-inspired machine-learning algorithms can surpass deterministic simulations. Our study paves the way for artificial-intelligence characterization and control of coupled chaotic fields in diverse physical and biological systems, even in the absence of knowledge of the underlying dynamics. 
    more » « less
  3. Active fluids with spatiotemporally varying activity have potential applications to micromixing; however previously existing active fluids models are not prepared to account for spatiotemporally-varying active stresses. Our experimental work used UV-activated caged ATP to activate controlled regions of microtubule-kinesin active fluid inducing a propagating active-passive interface. Here, we recapitulate our experimental results with two models. The first model redistributes an initial ATP distribution by Fick's law and translates the ATP distribution into a velocity profile by Michaelis-Menton kinetics. This model reproduces our experimental measurements for the low-Péclet number limit within 10% error without fitting parameters. However, as the model is diffusion based, it fails to capture the convective based superdiffusive-like behaviour at high Péclet numbers. Our second model introduces a spatiotemporally varying ATP field to an existing nematohydrodynamic active fluid model and then couples the active stresses to local ATP concentrations. This model is successful in qualitatively capturing the superdiffusive-like progression of the active-inactive interface for high Peclet number (convective transport) experimental cases. Our results show that new model frameworks are necessary for capturing the behaviour of active fluid with spatiotemporally varying activity. *T.E.B., E.H.T., J.H.D., and K.-T.W. acknowledge support from the National Science Foundation (NSF-CBET-2045621). C.-C. C. was supported through the National Science and Technology Council (NSTC), Taiwan (111-2221-E-006-102-MY3). M.M.N. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0022280). 
    more » « less
  4. Abstract We discuss an exhaustive search approach to fit the incoherent scatter spectrum (ISS) in the F1‐region for molecular ion fraction (fm), ion temperature (Ti), and electron temperature (Te). The commonly used “full profile” approach for F1‐region measurements parameterizes the molecular ion fraction as a function of altitude and fits all the related heights for the state variables. In our approach, we fit the ISS at each height forfm,Ti,Te, and ion velocity (Vi) independently. Our exhaustive search method finds all the major local minima at each altitude. Although a parameterized function is used to guide the algorithm in finding the best solution, the fitting parameters retain their local characteristics. Despite that fittingfm,Ti, andTewithout constraints requires Doppler shift to be accurately determined and the ISS signal‐to‐noise ratio higher than the full‐profile method, simulations show thatTi,Te, andfmcan be recovered within a few percent accuracy with a moderate signal‐to‐noise ratio. We apply the exhaustive search approach to the Arecibo high‐resolution incoherent scatter radar data taken on 13 September 2014. The derived ion and electron temperatures are sensitive enough to reveal thermosphere gravity waves commonly seen in the electron density previously. Our method is more robust than previous height‐independent fitting methods. Comparison with another Arecibo program indicates our results are likely more accurate. Simultaneous high‐resolution measurements ofTi,Te,fm,Vi, and electron concentration (Ne) in our approach open new opportunities for synergistic studies of the F1‐region dynamics and chemistry. 
    more » « less
  5. Abstract We study the Kardar–Parisi–Zhang (KPZ) equation on the half-line x ⩾ 0 with Neumann type boundary condition. Stationary measures of the KPZ dynamics were characterized in recent work: they depend on two parameters, the boundary parameter u of the dynamics, and the drift − v of the initial condition at infinity. We consider the fluctuations of the height field when the initial condition is given by one of these stationary processes. At large time t , it is natural to rescale parameters as ( u , v ) = t −1/3 ( a , b ) to study the critical region. In the special case a + b = 0, treated in previous works, the stationary process is simply Brownian. However, these Brownian stationary measures are particularly relevant in the bound phase ( a < 0) but not in the unbound phase. For instance, starting from the flat or droplet initial condition, the height field near the boundary converges to the stationary process with a > 0 and b = 0, which is not Brownian. For a + b ⩾ 0, we determine exactly the large time distribution F a , b stat of the height function h (0, t ). As an application, we obtain the exact covariance of the height field in a half-line at two times 1 ≪ t 1 ≪ t 2 starting from stationary initial condition, as well as estimates, when starting from droplet initial condition, in the limit t 1 / t 2 → 1. 
    more » « less