skip to main content

Title: Development of an Interdisciplinary, Project-based Scientific Research Course for STEM Departments
The Project-Based Scientific Research is a new interdisciplinary course developed by the National Science Foundation (NSF - IUSE) funded STEM center at _______ State University. The implementation of this new course was one of the major three goals for this five year grant to strengthen the STEM undergraduate research community at ______ State University by helping undergraduates who are interested in hands-on and/or scientific research. The course is designed to introduce undergraduate junior and senior science, engineering technology and math students to the vibrant world of real research; to build foundational skills for research; to help STEM students meet potential mentors whose research labs they might join with the goal of gaining experimental research experience while on campus. On top of course content and requirements the following goals are aimed for the student and faculty mentors to strengthen the research community; (1) helping undergraduate students who are interested in research connect with faculty partners who are committed to mentoring undergraduates in research, (2) to guide students in reading through papers that introduce the type of research being carried out in a faculty partners lab, (3) to guide students in drafting a mini-review of 5 papers relevant to that research, (4) to guide students in identifying and writing up a research proposal which they will complete in the lab of the faculty partner. The learning objectives for the students in this course are summarized as; (a) by the end of this course, all students build a foundational understanding of the principles of STEM research through the exploration and discussion of important historical interdisciplinary projects; (b) interact with faculty researchers who perform projects across STEM disciplines; (c) be able to describe the similarities and differences between experimental and theoretical STEM research; (d) explore and present several possibilities for future research topics; (e) design and present a research prospectus, complete with a review of some of the relevant literature; (f) and be prepared to continue a research project with a chosen faculty mentor or mentors. First year, six academic departments out of eight participated this new course by offering a cross-listed course for their students under one major course taught by one of the PIs at the STEM Center. All the details such as challenges faced, outcomes, resources used, faculty involved, student and faculty feedback etc. for this course will be shared with academia in the paper.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Zone 1 Conference of the American Society for Engineering Education
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    STEM (science, technology, engineering, mathematics) graduate programs excel at developing students’ technical expertise and research skills. The interdisciplinary nature of many STEM research projects means that graduate students often find themselves paired with experts from other fields and asked to work together to solve complex problems. At Michigan State University, the College of Engineering has developed a graduate level course that helps students build professional skills (communications, teamwork, leadership) to enhance their participation in these types of interdisciplinary projects. This semester-long course also includes training on research mentoring, helping students work more effectively with their current faculty mentors and build skills to serve as mentors themselves. Discussions of research ethics are integrated throughout the course, which allows participants to partially fulfill graduate training requirements in the responsible conduct of research. This paper will discuss the development of this course, which is based in part on curriculum developed as part of an ongoing training grant from the National Science Foundation. 18 graduate students from Engineering and other STEM disciplines completed the course in Spring 2019, and we will present data gathered from these participants along with lessons learned and suggestions for institutions interested in adapting these open-source curriculum materials for their own use. Students completed pre- and post-course evaluations, which asked about their expectations and reasons for participating in the course at the outset and examined their experiences and learning at the end. Overall, students reported that the course content was highly relevant to their daily work and that they were highly satisfied with the content of all three major focus areas (communications, teamwork, leadership). Participants also reported that the structure and the pacing of the course were appropriate, and that the experience had met their expectations. The results related to changes in students’ knowledge indicate that the course was effective in increasing participants understanding of and ability to employ professional skills for communications, teamwork and leadership. Statistical analyses were conducted by creating latent constructs for each item as applicable and then running paired t-tests. The evaluation also demonstrated increases in students’ interest, knowledge and confidence of the professional skills offered in the course. 
    more » « less
  2. Eliza Keener, Dept of Engineering Technology, Fairmont State University, Fairmont, WV 26554, and Landon Brewer, Dept of Natural Sciences, Fairmont State University, Fairmont, WV 26554. Benefits of First2 Network immersive bridge programs at Fairmont State University.    The First2 Network’s Immersion program at Fairmont State University provides a college bridge experience for incoming students in science, technology and engineering and math (STEM). The First2 Network’s goal is to guide and assist rural, first-generation, and other underrepresented STEM college students. The summer immersion bridge experience immerses students into college life. Students stay in dorms and learn what it’s like to be away from home while engaging in a program which includes real research projects in collaboration with professors and peer mentors, introductions to campus resources, and social events. This program helps students get acclimated to college, making it an easier adjustment. The immersive experience also provides connections and a safe space that students can go to when they have questions or need help.     As students who attended the immersive program during the summer of 2022, we can say that it helped us greatly. Not only did we learn about all the resources on campus, but we got real lab experience. We were lab partners conducting analytical chemistry research on lead in paint. We performed all the lab work with supervision and guidance from chemistry professors and lab assistants. At the end of the 2 weeks, we presented our research to students, faculty, and family members. This immersion program was resume and experience building, that helped us make connections with our peers that a have persisted throughout our first year. 
    more » « less
  3. Abstract

    This mixed‐methods research focused on the implementation of a coordinated distributed experiment (CDE) investigating local adaptation in common milkweed (Asclepias syriaca), a host plant for the monarch butterfly population. Faculty participants were recruited from the Ecological Research as Education Network (EREN) who recruited their former undergraduate students. Quantitative data were drawn from the Milkweed Local Adaptation (MLA) CDE database across the three project years. Qualitative data included faculty survey responses, semi‐structured interviews of faculty and former undergraduates, and review of undergraduate research posters, papers, and curricula using rubrics aligned with 4DEE and Next Generation Science Standards (NGSS) benchmarks. Analysis of the MLA CDE database illustrates a decline in both participating institutions and in counts of milkweed stems over the project (2018–2020). Qualitative data analysis revealed that CDEs: (1) offer opportunities for higher education faculty and their students to be part of research including developing skills of data collection, analysis, and interpretation; (2) have unexpected challenges; and (3) can inspire undergraduate students to develop independent research projects or curricular modules for use in formal 6–12 classrooms. Broader ecological educational implications of our outcomes for higher education faculty and their undergraduate students include: (1) recommendation that faculty members involved ought to be proactively informed about potential challenges and provided with guidance on how to mitigate them; (2) mitigating challenges with model studies to try to estimate the sample size and redundancy likely to produce robust data; and (3) proactive use of the educational network to understand institutional use of the CDE project with undergraduates.

    more » « less
  4. Undergraduate research experiences (UREs) have been shown to improve both persistence and graduation rates for women and students of color (Alquicira et al. 2022). Although these effects are observed broadly across higher education, they are especially pronounced in the context of the STEM fields (National Academies of Sciences, Engineering, and Medicine 2017). Although community colleges disproportionately enroll students who can most benefit from UREs, structural barriers make UREs rare at community colleges (Hewlett 2018). This change project, based at a mid-sized community college in Washington State, is part of the state’s Consortium for Undergraduate Research and Equity (CURE) and aspires to address the paucity of community college research opportunities in STEM through the design and implementation of a year-long research project for students enrolled in the primary course sequence for biology majors (approximately 50-100 annually). The project’s underlying theory of change is twofold. First, two local community partners and four science faculty use backward design to create a research project that embeds laboratory skills and learning outcomes in a year-long URE. Second, participating faculty replace the entire lab curriculum in the college’s three-course biology sequence with this applied year-long research project. Incorporating applied research into the college’s biology curriculum demystifies and democratizes inquiry-based research for first-generation, underrepresented, and/or academically underprepared students, who also may not have the financial privilege to participate in an unpaid internship that affords them such an experience. Preliminary findings from this change initiative will focus on project goals related to creating equitable access across a range of outcomes including demographic participation rates, the development of professional STEM research skills, and the extent to which UREs enhance a community college student’s sense of belonging among a larger scientific community. 
    more » « less
  5. In higher education, Learning Assistants (LAs)—a relatively recent evolution grounded in peer mentorship models—are gaining popularity in classrooms as universities strive to meet the needs of undergraduate learners. Unlike Teaching Assistants, LAs are undergraduate students who receive continuous training from faculty mentors in content-area coaching and pedagogical skills. As near-peers, they assist assigned groups of undergraduates (students) during class. Research on LAs suggests that they are significant in mitigating high Drop-Fail-Withdrawal rates of large enrollment undergraduate science, technology, engineering, mathematics, and medical (STEMM) courses. However, there is a dearth of description regarding the learning between LAs and STEMM faculty mentors. This paper reports on perspectives of faculty mentors and their cooperating LAs in regard to their learning relationships during a Calculus II at a research-oriented university during Spring of 2020. Using an exploratory-descriptive qualitative design, faculty (oral responses) and LAs (written responses) reflected on their relationship. Content analysis (coding) resulted in four salient categories (by faculty and LA percentages, respectively) in: Showing Care and Fostering Relationships (47%, 23%); Honing Pedagogical Skills (27%, 36%); Being Prepared for Class and Students (23%, 28%); and Developing Content Knowledge in Calculus (3%, 13%). Benefits of LAs to faculty and ways to commence LA programs at institutions are also discussed. 
    more » « less