Landsat 5 has produced imagery for decades that can now be viewed and manipulated in Google Earth Engine, but a general, automated way of producing a coherent time series from these images—particularly over cloudy areas in the distant past—is elusive. Here, we create a land use and land cover (LULC) time series for part of tropical Mato Grosso, Brazil, using the Bayesian Updating of Land Cover: Unsupervised (BULC-U) technique. The algorithm built backward in time from the GlobCover 2009 data set, a multi-category global LULC data set at 300 m resolution for the year 2009, combining it with Landsat time series imagery to create a land cover time series for the period 1986–2000. Despite the substantial LULC differences between the 1990s and 2009 in this area, much of the landscape remained the same: we asked whether we could harness those similarities and differences to recreate an accurate version of the earlier LULC. The GlobCover basis and the Landsat-5 images shared neither a common spatial resolution nor time frame, But BULC-U successfully combined the labels from the coarser classification with the spatial detail of Landsat. The result was an accurate fine-scale time series that quantified the expansion of deforestation in the study area, which more than doubled in size during this time. Earth Engine directly enabled the fusion of these different data sets held in its catalog: its flexible treatment of spatial resolution, rapid prototyping, and overall processing speed permitted the development and testing of this study. Many would-be users of remote sensing data are currently limited by the need to have highly specialized knowledge to create classifications of older data. The approach shown here presents fewer obstacles to participation and allows a wide audience to create their own time series of past decades. By leveraging both the varied data catalog and the processing speed of Earth Engine, this research can contribute to the rapid advances underway in multi-temporal image classification techniques. Given Earth Engine’s power and deep catalog, this research further opens up remote sensing to a rapidly growing community of researchers and managers who need to understand the long-term dynamics of terrestrial systems.
more »
« less
A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery
With the ability to capture daily imagery of Earth at very high spatial resolutions, commercial smallsats are emerging as a key resource for the remote sensing community. Planet (Planet Labs, Inc., San Francisco, CA, USA) operates the largest constellation of Earth imaging smallsats, which have been capturing multispectral imagery for consumer use since 2016. Use of these images is growing in the remote sensing community, but the variation in radiometric and geometric quality compared to traditional platforms (i.e., Landsat, MODIS, etc.) means the images are not always ‘analysis ready’ upon download. Neglecting these variations can impact derived products and analyses. Users also must contend with constantly evolving technology, which improves products but can create discrepancies across sensor generations. This communication provides a technical review of Planet’s PlanetScope smallsat data streams and extant literature to provide practical considerations to the remote sensing community for utilizing these images in remote sensing research. Radiometric and geometric issues for researchers to consider are highlighted alongside a review of processing completed by Planet and innovations being developed by the user community to foster the adoption and use of these images for scientific applications.
more »
« less
- Award ID(s):
- 1934759
- PAR ID:
- 10386080
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 13
- Issue:
- 19
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 3930
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Remote sensing datasets usually have a wide range of spatial and spectral resolutions. They provide unique advantages in surveillance systems, and many government organizations use remote sensing multispectral imagery to monitor security-critical infrastructures or targets. Artificial Intelligence (AI) has advanced rapidly in recent years and has been widely applied to remote image analysis, achieving state-of-the-art (SOTA) performance. However, AI models are vulnerable and can be easily deceived or poisoned. A malicious user may poison an AI model by creating a stealthy backdoor. A backdoored AI model performs well on clean data but behaves abnormally when a planted trigger appears in the data. Backdoor attacks have been extensively studied in machine learning-based computer vision applications with natural images. However, much less research has been conducted on remote sensing imagery, which typically consists of many more bands in addition to the red, green, and blue bands found in natural images. In this paper, we first extensively studied a popular backdoor attack, BadNets, applied to a remote sensing dataset, where the trigger was planted in all of the bands in the data. Our results showed that SOTA defense mechanisms, including Neural Cleanse, TABOR, Activation Clustering, Fine-Pruning, GangSweep, Strip, DeepInspect, and Pixel Backdoor, had difficulties detecting and mitigating the backdoor attack. We then proposed an explainable AI-guided backdoor attack specifically for remote sensing imagery by placing triggers in the image sub-bands. Our proposed attack model even poses stronger challenges to these SOTA defense mechanisms, and no method was able to defend it. These results send an alarming message about the catastrophic effects the backdoor attacks may have on satellite imagery.more » « less
-
Superresolution of GOES-16 ABI Bands to a Common High Resolution with a Convolutional Neural NetworkAbstract Superresolution is the general task of artificially increasing the spatial resolution of an image. The recent surge in machine learning (ML) research has yielded many promising ML-based approaches for performing single-image superresolution including applications to satellite remote sensing. We develop a convolutional neural network (CNN) to superresolve the 1- and 2-km bands on the GOES-R series Advanced Baseline Imager (ABI) to a common high resolution of 0.5 km. Access to 0.5-km imagery from ABI band 2 enables the CNN to realistically sharpen lower-resolution bands without significant blurring. We first train the CNN on a proxy task, which allows us to only use ABI imagery, namely, degrading the resolution of ABI bands and training the CNN to restore the original imagery. Comparisons at reduced resolution and at full resolution withLandsat-8/Landsat-9observations illustrate that the CNN produces images with realistic high-frequency detail that is not present in a bicubic interpolation baseline. Estimating all ABI bands at 0.5-km resolution allows for more easily combining information across bands without reconciling differences in spatial resolution. However, more analysis is needed to determine impacts on derived products or multispectral imagery that use superresolved bands. This approach is extensible to other remote sensing instruments that have bands with different spatial resolutions and requires only a small amount of data and knowledge of each channel’s modulation transfer function. Significance StatementSatellite remote sensing instruments often have bands with different spatial resolutions. This work shows that we can artificially increase the resolution of some lower-resolution bands by taking advantage of the texture of higher-resolution bands on theGOES-16ABI instrument using a convolutional neural network. This may help reconcile differences in spatial resolution when combining information across bands, but future analysis is needed to precisely determine impacts on derived products that might use superresolved bands.more » « less
-
null (Ed.)The scale and accessibility of passive global surveillance have rapidly increased over time. This provides an opportunity to calibrate the performance of models, algorithms, and reflectance ratios between remote-sensing devices. Here, we test the sensitivity and specificity of the Eucalypt chlorophyll-a reflectance ratio (ECARR) and Eucalypt chlorophyll-b reflectance ratio (ECBRR) to remotely identify eucalypt vegetation in Queensland, Australia. We compare the reflectance ratio values from Sentinel-2 and Planet imagery across four sites of known vegetation composition. All imagery was transformed to reflectance values, and Planet imagery was additionally scaled to harmonize across Planet scenes. ECARR can identify eucalypt vegetation remotely with high sensitivity but shows low specificity and is impacted by the density of the vegetation. ECBRR reflectance ratios show similar sensitivity and specificity when identifying eucalypt vegetation but with values an order of magnitude smaller than ECARR. We find that ECARR was better at identifying eucalypt vegetation in the Sentinel-2 imagery than Planet imagery. ECARR can serve as a general chlorophyll indicator but is not a specific index to identify Eucalyptus vegetation with certainty.more » « less
-
The constellation of Earth-observing satellites continuously collects measurements of scattered radiance, which must be transformed into geophysical parameters in order to answer fundamental scientific questions about the Earth. Retrieval of these parameters requires highly flexible, accurate, and fast forward and inverse radiative transfer models. Existing forward models used by the remote sensing community are typically accurate and fast, but sacrifice flexibility by assuming the atmosphere or ocean is composed of plane-parallel layers. Monte Carlo forward models can handle more complex scenarios such as 3D spatial heterogeneity, but are relatively slower. We propose looking to the computer graphics community for inspiration to improve the statistical efficiency of Monte Carlo forward models and explore new approaches to inverse models for remote sensing. In Part 2 of this work, we demonstrate that Monte Carlo forward models in computer graphics are capable of sufficient accuracy for remote sensing by extending Mitsuba 3, a forward and inverse modeling framework recently developed in the computer graphics community, to simulate simple atmosphere-ocean systems and show that our framework is capable of achieving error on par with codes currently used by the remote sensing community on benchmark results.more » « less
An official website of the United States government

