skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Predicting personality from patterns of behavior collected with smartphones
Smartphones enjoy high adoption rates around the globe. Rarely more than an arm’s length away, these sensor-rich devices can easily be repurposed to collect rich and extensive records of their users’ behaviors (e.g., location, communication, media consumption), posing serious threats to individual privacy. Here we examine the extent to which individuals’ Big Five personality dimensions can be predicted on the basis of six different classes of behavioral information collected via sensor and log data harvested from smartphones. Taking a machine-learning approach, we predict personality at broad domain ( r median = 0.37) and narrow facet levels ( r median = 0.40) based on behavioral data collected from 624 volunteers over 30 consecutive days (25,347,089 logging events). Our cross-validated results reveal that specific patterns in behaviors in the domains of 1) communication and social behavior, 2) music consumption, 3) app usage, 4) mobility, 5) overall phone activity, and 6) day- and night-time activity are distinctively predictive of the Big Five personality traits. The accuracy of these predictions is similar to that found for predictions based on digital footprints from social media platforms and demonstrates the possibility of obtaining information about individuals’ private traits from behavioral patterns passively collected from their smartphones. Overall, our results point to both the benefits (e.g., in research settings) and dangers (e.g., privacy implications, psychological targeting) presented by the widespread collection and modeling of behavioral data obtained from smartphones.  more » « less
Award ID(s):
1758835
PAR ID:
10188812
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
30
ISSN:
0027-8424
Page Range / eLocation ID:
17680 to 17687
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carere, Claudio (Ed.)
    Abstract Although much work has focused on non-social personality traits such as activity, exploration, and neophobia, there is a growing appreciation that social personality traits play an important role in group dynamics, disease transmission, and fitness and that social personality traits may be linked to non-social personality traits. These relationships are important because behavioral syndromes, defined here as correlated behavioral phenotypes, can constrain evolutionary responses. However, the strength and direction of relationships between social and non-social personality traits remain unclear. In this project, we examine social and non-social personality traits, and the relationships between them, in the paper wasp Polistes fuscatus. With a novel assay, we identify 5 personality traits, 2 non-social (exploration and activity), and 3 social (aggression, affiliation, and antennation) personality traits. We also find that social and non-social personality traits are phenotypically linked. We find a positive correlation between aggression and activity and a negative correlation between affiliation and activity. We also find a positive correlation between exploration and activity. Our work is an important step in understanding how phenotypic linkage between social and non-social behaviors may influence behavioral evolution. As a burgeoning model system for the study of genetic and neurobiological mechanisms of social behavior, Polistes fuscatus has the potential to add to this work by exploring the causes and consequences of individual behavioral variation. 
    more » « less
  2. The construction industry still leads the world as one of the sectors with the most work-related injuries and worker fatalities. Recent studies show that both a state of mindfulness and various personality traits contribute to individuals’ safety and work performance. This study examines the relationship between mindfulness and personality by measuring the mindfulness state of individuals against their personality traits. To achieve this objective, data were collected from a sample of 55 undergraduate students at George Mason University. Scores from the Big Five Inventory were ranked by each traits’ score (independent variable) and split into three groups: high, moderate, and low scores. The corresponding mindfulness scores (dependent variable) were analyzed to determine the relationship between high/low personality traits and mindfulness. Comparing the high/low groups using statistical analyses showed that three of the five personality traits—conscientiousness, agreeableness, and neuroticism—significantly correlate with higher mindfulness scores of individuals. As mindfulness has been shown to increase individual safety and work performance and to reduce stress, the results of this study help inform future work into translating personality and mindfulness characteristics into factors that predict specific elements of unsafe human behaviors. 
    more » « less
  3. null (Ed.)
    People around the world own digital media devices that mediate and are in close proximity to their daily behaviours and situational contexts. These devices can be harnessed as sensing technologies to collect information from sensor and metadata logs that provide fine–grained records of everyday personality expression. In this paper, we present a conceptual framework and empirical illustration for personality sensing research, which leverages sensing technologies for personality theory development and assessment. To further empirical knowledge about the degree to which personality–relevant information is revealed via such data, we outline an agenda for three research domains that focus on the description, explanation, and prediction of personality. To illustrate the value of the personality sensing research agenda, we present findings from a large smartphone–based sensing study ( N = 633) characterizing individual differences in sensed behavioural patterns (physical activity, social behaviour, and smartphone use) and mapping sensed behaviours to the Big Five dimensions. For example, the findings show associations between behavioural tendencies and personality traits and daily behaviours and personality states. We conclude with a discussion of best practices and provide our outlook on how personality sensing will transform our understanding of personality and the way we conduct assessment in the years to come. © 2020 European Association of Personality Psychology 
    more » « less
  4. Collaborative systems design is a human-centered activity dependent on individual decision-making processes. Personality traits have been found to influence individual behaviors and tendencies to compete or cooperate. This paper investigates the effects of Big Five and Locus of Control personality traits on negotiated outcomes of a simplified collaborative engineering design task. Secondary data includes results from short-form personality inventories and outcomes of pair design tasks. The data includes ten sessions of four participants each, where each participant completes a sequence of 12 pair tasks involving design space exploration and negotiation. Regression analysis shows a statistically-significant relationship between Big Five and Locus of Control and total individual value accumulated across the 12 design tasks. Results show the Big Five, aggregating extraversion, agreeableness, conscientiousness, neuroticism, and intellect/imagination to a single factor, negatively affects individual value and internal Locus of Control positively affects individual value. Future work should consider a dedicated experiment to refine understanding of how personality traits influence collaborative systems design and propose interventions to improve collaborative design processes. 
    more » « less
  5. Differential privacy concepts have been successfully used to protect anonymity of individuals in population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise different privacy challenges, that of protecting private behaviors that can be revealed from time series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation. But the accuracy requirement on inferences drawn from physiological data, together with well-established limits within which these data values occur, render traditional privacy mechanisms inapplicable. In this work, we define a new behavioral privacy metric based on differential privacy and propose a novel data substitution mechanism to protect behavioral privacy. We evaluate the efficacy of our scheme using 660 hours of ECG, respiration, and activity data collected from 43 participants and demonstrate that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors. 
    more » « less