skip to main content


Title: Personality Sensing for Theory Development and Assessment in the Digital Age
People around the world own digital media devices that mediate and are in close proximity to their daily behaviours and situational contexts. These devices can be harnessed as sensing technologies to collect information from sensor and metadata logs that provide fine–grained records of everyday personality expression. In this paper, we present a conceptual framework and empirical illustration for personality sensing research, which leverages sensing technologies for personality theory development and assessment. To further empirical knowledge about the degree to which personality–relevant information is revealed via such data, we outline an agenda for three research domains that focus on the description, explanation, and prediction of personality. To illustrate the value of the personality sensing research agenda, we present findings from a large smartphone–based sensing study ( N = 633) characterizing individual differences in sensed behavioural patterns (physical activity, social behaviour, and smartphone use) and mapping sensed behaviours to the Big Five dimensions. For example, the findings show associations between behavioural tendencies and personality traits and daily behaviours and personality states. We conclude with a discussion of best practices and provide our outlook on how personality sensing will transform our understanding of personality and the way we conduct assessment in the years to come. © 2020 European Association of Personality Psychology  more » « less
Award ID(s):
1758835
NSF-PAR ID:
10294374
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
European Journal of Personality
Volume:
34
Issue:
5
ISSN:
0890-2070
Page Range / eLocation ID:
649 to 669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Mobile health technology has demonstrated the ability of smartphone apps and sensors to collect data pertaining to patient activity, behavior, and cognition. It also offers the opportunity to understand how everyday passive mobile metrics such as battery life and screen time relate to mental health outcomes through continuous sensing. Impulsivity is an underlying factor in numerous physical and mental health problems. However, few studies have been designed to help us understand how mobile sensors and self-report data can improve our understanding of impulsive behavior. Objective The objective of this study was to explore the feasibility of using mobile sensor data to detect and monitor self-reported state impulsivity and impulsive behavior passively via a cross-platform mobile sensing application. Methods We enrolled 26 participants who were part of a larger study of impulsivity to take part in a real-world, continuous mobile sensing study over 21 days on both Apple operating system (iOS) and Android platforms. The mobile sensing system (mPulse) collected data from call logs, battery charging, and screen checking. To validate the model, we used mobile sensing features to predict common self-reported impulsivity traits, objective mobile behavioral and cognitive measures, and ecological momentary assessment (EMA) of state impulsivity and constructs related to impulsive behavior (ie, risk-taking, attention, and affect). Results Overall, the findings suggested that passive measures of mobile phone use such as call logs, battery charging, and screen checking can predict different facets of trait and state impulsivity and impulsive behavior. For impulsivity traits, the models significantly explained variance in sensation seeking, planning, and lack of perseverance traits but failed to explain motor, urgency, lack of premeditation, and attention traits. Passive sensing features from call logs, battery charging, and screen checking were particularly useful in explaining and predicting trait-based sensation seeking. On a daily level, the model successfully predicted objective behavioral measures such as present bias in delay discounting tasks, commission and omission errors in a cognitive attention task, and total gains in a risk-taking task. Our models also predicted daily EMA questions on positivity, stress, productivity, healthiness, and emotion and affect. Perhaps most intriguingly, the model failed to predict daily EMA designed to measure previous-day impulsivity using face-valid questions. Conclusions The study demonstrated the potential for developing trait and state impulsivity phenotypes and detecting impulsive behavior from everyday mobile phone sensors. Limitations of the current research and suggestions for building more precise passive sensing models are discussed. Trial Registration ClinicalTrials.gov NCT03006653; https://clinicaltrials.gov/ct2/show/NCT03006653 
    more » « less
  2. Continuous passive sensing of daily behavior from mobile devices has the potential to identify behavioral patterns associated with different aspects of human characteristics. This paper presents novel analytic approaches to extract and understand these behavioral patterns and their impact on predicting adaptive and maladaptive personality traits. Our machine learning analysis extends previous research by showing that both adaptive and maladaptive traits can be predicted from passively sensed behavior providing initial evidence for the utility of this type of data to study personality and its pathology. The analysis also provides insights into the underlying behavior patterns that link adaptive and maladaptive variants consistent with contemporary models of personality pathology. 
    more » « less
  3. BACKGROUND Optical sensing devices measure the rich physical properties of an incident light beam, such as its power, polarization state, spectrum, and intensity distribution. Most conventional sensors, such as power meters, polarimeters, spectrometers, and cameras, are monofunctional and bulky. For example, classical Fourier-transform infrared spectrometers and polarimeters, which characterize the optical spectrum in the infrared and the polarization state of light, respectively, can occupy a considerable portion of an optical table. Over the past decade, the development of integrated sensing solutions by using miniaturized devices together with advanced machine-learning algorithms has accelerated rapidly, and optical sensing research has evolved into a highly interdisciplinary field that encompasses devices and materials engineering, condensed matter physics, and machine learning. To this end, future optical sensing technologies will benefit from innovations in device architecture, discoveries of new quantum materials, demonstrations of previously uncharacterized optical and optoelectronic phenomena, and rapid advances in the development of tailored machine-learning algorithms. ADVANCES Recently, a number of sensing and imaging demonstrations have emerged that differ substantially from conventional sensing schemes in the way that optical information is detected. A typical example is computational spectroscopy. In this new paradigm, a compact spectrometer first collectively captures the comprehensive spectral information of an incident light beam using multiple elements or a single element under different operational states and generates a high-dimensional photoresponse vector. An advanced algorithm then interprets the vector to achieve reconstruction of the spectrum. This scheme shifts the physical complexity of conventional grating- or interference-based spectrometers to computation. Moreover, many of the recent developments go well beyond optical spectroscopy, and we discuss them within a common framework, dubbed “geometric deep optical sensing.” The term “geometric” is intended to emphasize that in this sensing scheme, the physical properties of an unknown light beam and the corresponding photoresponses can be regarded as points in two respective high-dimensional vector spaces and that the sensing process can be considered to be a mapping from one vector space to the other. The mapping can be linear, nonlinear, or highly entangled; for the latter two cases, deep artificial neural networks represent a natural choice for the encoding and/or decoding processes, from which the term “deep” is derived. In addition to this classical geometric view, the quantum geometry of Bloch electrons in Hilbert space, such as Berry curvature and quantum metrics, is essential for the determination of the polarization-dependent photoresponses in some optical sensors. In this Review, we first present a general perspective of this sensing scheme from the viewpoint of information theory, in which the photoresponse measurement and the extraction of light properties are deemed as information-encoding and -decoding processes, respectively. We then discuss demonstrations in which a reconfigurable sensor (or an array thereof), enabled by device reconfigurability and the implementation of neural networks, can detect the power, polarization state, wavelength, and spatial features of an incident light beam. OUTLOOK As increasingly more computing resources become available, optical sensing is becoming more computational, with device reconfigurability playing a key role. On the one hand, advanced algorithms, including deep neural networks, will enable effective decoding of high-dimensional photoresponse vectors, which reduces the physical complexity of sensors. Therefore, it will be important to integrate memory cells near or within sensors to enable efficient processing and interpretation of a large amount of photoresponse data. On the other hand, analog computation based on neural networks can be performed with an array of reconfigurable devices, which enables direct multiplexing of sensing and computing functions. We anticipate that these two directions will become the engineering frontier of future deep sensing research. On the scientific frontier, exploring quantum geometric and topological properties of new quantum materials in both linear and nonlinear light-matter interactions will enrich the information-encoding pathways for deep optical sensing. In addition, deep sensing schemes will continue to benefit from the latest developments in machine learning. Future highly compact, multifunctional, reconfigurable, and intelligent sensors and imagers will find applications in medical imaging, environmental monitoring, infrared astronomy, and many other areas of our daily lives, especially in the mobile domain and the internet of things. Schematic of deep optical sensing. The n -dimensional unknown information ( w ) is encoded into an m -dimensional photoresponse vector ( x ) by a reconfigurable sensor (or an array thereof), from which w′ is reconstructed by a trained neural network ( n ′ = n and w′   ≈   w ). Alternatively, x may be directly deciphered to capture certain properties of w . Here, w , x , and w′ can be regarded as points in their respective high-dimensional vector spaces ℛ n , ℛ m , and ℛ n ′ . 
    more » « less
  4. Although some research highlights the benefits of behavioral routines for individual functioning, other research indicates that routines can reflect an individual's inflexibility and lower well-being. Given conflicting accounts on the benefits of routine, research is needed to examine how routineness versus flexibility in health-related behaviors correspond to personality traits, health, and occupational outcomes. We adopt a nonlinear dynamical systems approach to understanding routine using automatically sensed health-related behaviors collected from 483 information workers over a roughly two-month period. We utilized multidimensional recurrence quantification analysis to derive a measure of health regularity (routineness) from measures of daily step count, sleep duration, and heart rate variability (which relates to stress). Participants also completed measures of personality, health, and job performance at the start of the study and for two months via Ecological Momentary Assessments. Greater regularity was associated with higher neuroticism, lower agreeableness, and greater interpersonal and organizational deviance. Importantly, these results were independent of overall levels of each health indicator in addition to demographics. It is often believed that routine is desirable, but the results suggest that associations with routineness are more nuanced, and wearable sensors can provide insights into beneficial health behaviors. 
    more » « less
  5. In this mini-review, we discuss the fundamentals of using technology in mental health diagnosis and tracking. We highlight those principles using two clinical concepts: (1) cravings and relapse in the context of addictive disorders and (2) anhedonia in the context of depression. This manuscript is useful for both clinicians wanting to understand the scope of technology use in psychiatry and for computer scientists and engineers wishing to assess psychiatric frameworks useful for diagnosis and treatment. The increase in smartphone ownership and internet connectivity, as well as the accelerated development of wearable devices, have made the observation and analysis of human behavior patterns possible. This has, in turn, paved the way to understand mental health conditions better. These technologies have immense potential in facilitating the diagnosis and tracking of mental health conditions; they also allow the implementation of existing behavioral treatments in new contexts (e.g., remotely, online, and in rural/underserved areas), and the possibility to develop new treatments based on new understanding of behavior patterns. The path to understand how to best use technology in mental health includes the need to match interdisciplinary frameworks from engineering/computer sciences and psychiatry. Thus, we start our review by introducing bio-behavioral sensing, the types of information available, and what behavioral patterns they may reflect and be related to in psychiatric diagnostic frameworks. This information is linked to the use of functional imaging, highlighting how imaging modalities can be considered “ground truth” for mental health/psychiatric dimensions, given the heterogeneity of clinical presentations, and the difficulty of determining what symptom corresponds to what disease. We then discuss how mental health/psychiatric dimensions overlap, yet differ from, psychiatric diagnoses. Using two clinical examples, we highlight the potential agreement areas in assessment/management of anhedonia and cravings. These two dimensions were chosen because of their link to two very prevalent diseases worldwide: depression and addiction. Anhedonia is a core symptom of depression, which is one of the leading causes of disability worldwide. Cravings, the urge to use a substance or perform an action (e.g., shopping, internet), is the leading step before relapse. Lastly, through the manuscript, we discuss potential mental health dimensions. 
    more » « less