skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effects of Locus of Control and Big Five Personality Traits on Collaborative Engineering Design Tasks With Negotiation
Collaborative systems design is a human-centered activity dependent on individual decision-making processes. Personality traits have been found to influence individual behaviors and tendencies to compete or cooperate. This paper investigates the effects of Big Five and Locus of Control personality traits on negotiated outcomes of a simplified collaborative engineering design task. Secondary data includes results from short-form personality inventories and outcomes of pair design tasks. The data includes ten sessions of four participants each, where each participant completes a sequence of 12 pair tasks involving design space exploration and negotiation. Regression analysis shows a statistically-significant relationship between Big Five and Locus of Control and total individual value accumulated across the 12 design tasks. Results show the Big Five, aggregating extraversion, agreeableness, conscientiousness, neuroticism, and intellect/imagination to a single factor, negatively affects individual value and internal Locus of Control positively affects individual value. Future work should consider a dedicated experiment to refine understanding of how personality traits influence collaborative systems design and propose interventions to improve collaborative design processes.  more » « less
Award ID(s):
1742971
PAR ID:
10111099
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The study examines the relationship between the big five personality traits (extroversion, agreeableness, conscientiousness, neuroticism, and openness) and robot likeability and successful HRI implementation in varying human-robot interaction (HRI) situations. Further, this research investigates the influence of human-like attributes in robots (a.k.a. robotic anthropomorphism) on the likeability of robots. The research found that robotic anthropomorphism positively influences the relationship between human personality variables (e.g., extraversion and agreeableness) and robot likeability in human interaction with social robots. Further, anthropomorphism positively influences extraversion and robot likeability during industrial robotic interactions with humans. Extraversion, agreeableness, and neuroticism were found to play a significant role. This research bridges the gap by providing an in-depth understanding of the big five human personality traits, robotic anthropomorphism, and robot likeability in social-collaborative robotics. 
    more » « less
  2. The construction industry still leads the world as one of the sectors with the most work-related injuries and worker fatalities. Recent studies show that both a state of mindfulness and various personality traits contribute to individuals’ safety and work performance. This study examines the relationship between mindfulness and personality by measuring the mindfulness state of individuals against their personality traits. To achieve this objective, data were collected from a sample of 55 undergraduate students at George Mason University. Scores from the Big Five Inventory were ranked by each traits’ score (independent variable) and split into three groups: high, moderate, and low scores. The corresponding mindfulness scores (dependent variable) were analyzed to determine the relationship between high/low personality traits and mindfulness. Comparing the high/low groups using statistical analyses showed that three of the five personality traits—conscientiousness, agreeableness, and neuroticism—significantly correlate with higher mindfulness scores of individuals. As mindfulness has been shown to increase individual safety and work performance and to reduce stress, the results of this study help inform future work into translating personality and mindfulness characteristics into factors that predict specific elements of unsafe human behaviors. 
    more » « less
  3. null (Ed.)
    People around the world own digital media devices that mediate and are in close proximity to their daily behaviours and situational contexts. These devices can be harnessed as sensing technologies to collect information from sensor and metadata logs that provide fine–grained records of everyday personality expression. In this paper, we present a conceptual framework and empirical illustration for personality sensing research, which leverages sensing technologies for personality theory development and assessment. To further empirical knowledge about the degree to which personality–relevant information is revealed via such data, we outline an agenda for three research domains that focus on the description, explanation, and prediction of personality. To illustrate the value of the personality sensing research agenda, we present findings from a large smartphone–based sensing study ( N = 633) characterizing individual differences in sensed behavioural patterns (physical activity, social behaviour, and smartphone use) and mapping sensed behaviours to the Big Five dimensions. For example, the findings show associations between behavioural tendencies and personality traits and daily behaviours and personality states. We conclude with a discussion of best practices and provide our outlook on how personality sensing will transform our understanding of personality and the way we conduct assessment in the years to come. © 2020 European Association of Personality Psychology 
    more » « less
  4. As human-robot interactions become more social, a robot's personality plays an increasingly vital role in shaping user experience and its overall effectiveness. In this study, we examine the impact of three distinct robot personalities on user experiences during well-being exercises: a Baseline Personality that aligns with user expectations, a High Extraversion Personality, and a High Neuroticism Personality. These personalities were manifested through the robot's dialogue, which were generated using a large language model (LLM) guided by key behavioral characteristics from the Big 5 personality traits. In a between-subjects user study (N = 66), where each participant interacted with one distinct robot personality, we found that both the High Extraversion and High Neuroticism Robot Personalities significantly enhanced participants' emotional states (arousal, control, and valence). The High Extraversion Robot Personality was also rated as the most enjoyable to interact with. Additionally, evidence suggested that participants' personality traits moderated the effectiveness of specific robot personalities in eliciting positive outcomes from well-being exercises. Our findings highlight the potential benefits of designing robot personalities that deviate from users' expectations, thereby enriching human-robot interactions. 
    more » « less
  5. Smartphones enjoy high adoption rates around the globe. Rarely more than an arm’s length away, these sensor-rich devices can easily be repurposed to collect rich and extensive records of their users’ behaviors (e.g., location, communication, media consumption), posing serious threats to individual privacy. Here we examine the extent to which individuals’ Big Five personality dimensions can be predicted on the basis of six different classes of behavioral information collected via sensor and log data harvested from smartphones. Taking a machine-learning approach, we predict personality at broad domain ( r median = 0.37) and narrow facet levels ( r median = 0.40) based on behavioral data collected from 624 volunteers over 30 consecutive days (25,347,089 logging events). Our cross-validated results reveal that specific patterns in behaviors in the domains of 1) communication and social behavior, 2) music consumption, 3) app usage, 4) mobility, 5) overall phone activity, and 6) day- and night-time activity are distinctively predictive of the Big Five personality traits. The accuracy of these predictions is similar to that found for predictions based on digital footprints from social media platforms and demonstrates the possibility of obtaining information about individuals’ private traits from behavioral patterns passively collected from their smartphones. Overall, our results point to both the benefits (e.g., in research settings) and dangers (e.g., privacy implications, psychological targeting) presented by the widespread collection and modeling of behavioral data obtained from smartphones. 
    more » « less