In this work, we study the deep image prior (DIP) for reconstruction problems in magnetic resonance imaging (MRI). DIP has become a popular approach for image reconstruction, where it recovers the clear image by fitting an overparameterized convolutional neural network (CNN) to the corrupted/undersampled measurements. To improve the performance of DIP, recent work shows that using a reference image as an input often leads to improved reconstruction results compared to vanilla DIP with random input. However, obtaining the reference input image often requires supervision and hence is difficult in practice. In this work, we propose a self-guided reconstruction scheme that uses no training data other than the set of undersampled measurements to simultaneously estimate the network weights and input (reference). We introduce a new regularization that aids the joint estimation by requiring the CNN to act as a powerful denoiser. The proposed self-guided method gives significantly improved image reconstructions for MRI with limited measurements compared to the conventional DIP and the reference-guided method while eliminating the need for any additional data. 
                        more » 
                        « less   
                    
                            
                            A Two-Stage Algorithm for Joint Multimodal Image Reconstruction
                        
                    
    
            We propose a new two-stage joint image reconstruction method by recovering edges directly from observed data and then assembling an image using the recovered edges. More specifically, we reformulate joint image reconstruction with vectorial total-variation regularization as an l1 minimization problem of the Jacobian of the underlying multimodality or multicontrast images. We provide detailed derivation of data fidelity for the Jacobian in Radon and Fourier transform domains. The new minimization problem yields an optimal convergence rate higher than that of existing primaldual based reconstruction algorithms, and the per-iteration cost remains low by using closed-form matrix-valued shrinkages. We conducted numerical tests on a number of multicontrast CT and MR image datasets, which demonstrate that the proposed method significantly improves reconstruction efficiency and accuracy compared to the state-of-the-art joint image reconstruction methods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1719932
- PAR ID:
- 10189024
- Date Published:
- Journal Name:
- SIAM journal on imaging sciences
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 1936-4954
- Page Range / eLocation ID:
- 1425--1463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We introduce Visual Inverse Kinematics (VIK), which finds kinematically feasible joint configurations that satisfy vision-based constraints, bridging the gap between inverse kinematics (IK) and visual servoing (VS). Unlike IK, no explicit end-effector pose is given, and unlike VS, exact image measurements may not be available. In this work, we develop a formulation of the VIK problem with a field of view (FoV) constraint, enforcing the visibility of an object from a camera on the robot. Our proposed solution introduces a virtual kinematic chain that connects the physical robot and the object, transforming the FoV constraint into a joint angle kinematic constraint. Along the way, we introduce multiple vision-based cost functions to fulfill different objectives. We solve this formulation of the VIK problem using a method that involves a semidefinite program (SDP) constraint followed by a rank minimization algorithm. The performance of this method for solving the VIK problem is validated through simulations.more » « less
- 
            This paper presents a visual servoing method for controlling a robot in the configuration space by purely using its natural features. We first created a data collection pipeline that uses camera intrinsics, extrinsics, and forward kinematics to generate 2D projections of a robot's joint locations (keypoints) in image space. Using this pipeline, we are able to collect large sets of real-robot data, which we use to train realtime keypoint detectors. The inferred keypoints from the trained model are used as control features in an adaptive visual servoing scheme that estimates, in runtime, the Jacobian relating the changes of the keypoints and joint velocities. We compared the 2D configuration control performance of this method to the skeleton-based visual servoing method (the only other algorithm for purely vision-based configuration space visual servoing), and demonstrated that the keypoints provide more robust and less noisy features, which result in better transient response. We also demonstrate the first vision-based 3D configuration space control results in the literature, and discuss its limitations. Our data collection pipeline is available at https://github.com/JaniC-WPI/KPDataGenerator.git which can be utilized to collect image datasets and train realtime keypoint detectors for various robots and environments.more » « less
- 
            Route reconstruction is an important application for Geographic Information Systems (GIS) that rely heavily upon GPS data and other location data from IoT devices. Many of these techniques rely on geometric methods involving the \frechet\ distance to compare curve similarity. The goal of reconstruction, or map matching, is to find the most similar path within a given graph to a given input curve, which is often approximate location data. This process can be approximated by sampling the curves and using the \dfd. Due to power and coverage constraints, the GPS data itself may be sparse causing improper constraints along the edges during the reconstruction if only the continuous \frechet\ distance is used. Here, we look at two variations of discrete map matching: one constraining the walk length and the other limiting the number of vertices visited in the graph. %, and the constraint that the walk may not self-intersect. We give an efficient algorithm to solve the question based on walk length showing it is in \textbf{P}. We prove the other problem is \npc\ and the minimization variant is \apx\ while also giving a parameterized algorithm to solve the problem.more » « less
- 
            Electrical Impedance Tomography (EIT) is a well-known imaging technique for detecting the electrical properties of an object in order to detect anomalies, such as conductive or resistive targets. More specifically, EIT has many applications in medical imaging for the detection and location of bodily tumors since it is an affordable and non-invasive method, which aims to recover the internal conductivity of a body using voltage measurements resulting from applying low frequency current at electrodes placed at its surface. Mathematically, the reconstruction of the internal conductivity is a severely ill-posed inverse problem and yields a poor quality image reconstruction. To remedy this difficulty, at least in part, we regularize and solve the nonlinear minimization problem by the aid of a Krylov subspace-type method for the linear sub problem during each iteration. In EIT, a tumor or general anomaly can be modeled as a piecewise constant perturbation of a smooth background, hence, we solve the regularized problem on a subspace of relatively small dimension by the Flexible Golub-Kahan process that provides solutions that have sparse representation. For comparison, we use a well-known modified Gauss–Newton algorithm as a benchmark. Using simulations, we demonstrate the effectiveness of the proposed method. The obtained reconstructions indicate that the Krylov subspace method is better adapted to solve the ill-posed EIT problem and results in higher resolution images and faster convergence compared to reconstructions using the modified Gauss–Newton algorithm.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    