skip to main content


Title: Keypoints-Based Adaptive Visual Servoing for Control of Robotic Manipulators in Configuration Space
This paper presents a visual servoing method for controlling a robot in the configuration space by purely using its natural features. We first created a data collection pipeline that uses camera intrinsics, extrinsics, and forward kinematics to generate 2D projections of a robot's joint locations (keypoints) in image space. Using this pipeline, we are able to collect large sets of real-robot data, which we use to train realtime keypoint detectors. The inferred keypoints from the trained model are used as control features in an adaptive visual servoing scheme that estimates, in runtime, the Jacobian relating the changes of the keypoints and joint velocities. We compared the 2D configuration control performance of this method to the skeleton-based visual servoing method (the only other algorithm for purely vision-based configuration space visual servoing), and demonstrated that the keypoints provide more robust and less noisy features, which result in better transient response. We also demonstrate the first vision-based 3D configuration space control results in the literature, and discuss its limitations. Our data collection pipeline is available at https://github.com/JaniC-WPI/KPDataGenerator.git which can be utilized to collect image datasets and train realtime keypoint detectors for various robots and environments.  more » « less
Award ID(s):
1900953
NSF-PAR ID:
10481954
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN:
2153-0866
Page Range / eLocation ID:
6387 to 6394
Subject(s) / Keyword(s):
["Keypoint tracking, vision-based control, visual servoing"]
Format(s):
Medium: X
Location:
Detroit, MI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a novel visual servoing method that controls a robotic manipulator in the configuration space as opposed to the classical vision-based control methods solely focusing on the end effector pose. We first extract the robot's shape from depth images using a skeletonization algorithm and represent it using parametric curves. We then adopt an adaptive visual servoing scheme that estimates the Jacobian online relating the changes of the curve parameters and the joint velocities. The proposed scheme does not only enable controlling a manipulator in the configuration space, but also demonstrates a better transient response while converging to the goal configuration compared to the classical adaptive visual servoing methods. We present simulations and real robot experiments that demonstrate the capabilities of the proposed method and analyze its performance, robustness, and repeatability compared to the classical algorithms. 
    more » « less
  2. Keypoint detection serves as the basis for many computer vision and robotics applications. Despite the fact that colored point clouds can be readily obtained, most existing keypoint detectors extract only geometry-salient keypoints, which can impede the overall performance of systems that intend to (or have the potential to) leverage color information. To promote advances in such systems, we propose an efficient multi-modal keypoint detector that can extract both geometry-salient and color-salient keypoints in colored point clouds. The proposed CEntroid Distance (CED) keypoint detector comprises an intuitive and effective saliency measure, the centroid distance, that can be used in both 3D space and color space, and a multi-modal non-maximum suppression algorithm that can select keypoints with high saliency in two or more modalities. The proposed saliency measure leverages directly the distribution of points in a local neighborhood and does not require normal estimation or eigenvalue decomposition. We evaluate the proposed method in terms of repeatability and computational efficiency (i.e. running time) against state-of-the-art keypoint detectors on both synthetic and real-world datasets. Results demonstrate that our proposed CED keypoint detector requires minimal computational time while attaining high repeatability. To showcase one of the potential applications of the proposed method, we further investigate the task of colored point cloud registration. Results suggest that our proposed CED detector outperforms state-of-the-art handcrafted and learning-based keypoint detectors in the evaluated scenes. The C++ implementation of the proposed method is made publicly available at https://github.com/UCR-Robotics/CED_Detector. 
    more » « less
  3. Reconstructing 4D vehicular activity (3D space and time) from cameras is useful for autonomous vehicles, commuters and local authorities to plan for smarter and safer cities. Traffic is inherently repetitious over long periods, yet current deep learning-based 3D reconstruction methods have not considered such repetitions and have difficulty generalizing to new intersection-installed cameras. We present a novel approach exploiting longitudinal (long-term) repetitious motion as self-supervision to reconstruct 3D vehicular activity from a video captured by a single fixed camera. Starting from off-the-shelf 2D keypoint detections, our algorithm optimizes 3D vehicle shapes and poses, and then clusters their trajectories in 3D space. The 2D keypoints and trajectory clusters accumulated over long-term are later used to improve the 2D and 3D keypoints via self-supervision without any human annotation. Our method improves reconstruction accuracy over state of the art on scenes with a significant visual difference from the keypoint detector’s training data, and has many applications including velocity estimation, anomaly detection and vehicle counting. We demonstrate results on traffic videos captured at multiple city intersections, collected using our smartphones, YouTube, and other public datasets. 
    more » « less
  4. The advances in deep reinforcement learning re- cently revived interest in data-driven learning based approaches to navigation. In this paper we propose to learn viewpoint invariant and target invariant visual servoing for local mobile robot navigation; given an initial view and the goal view or an image of a target, we train deep convolutional network controller to reach the desired goal. We present a new architecture for this task which rests on the ability of establishing correspondences between the initial and goal view and novel reward structure motivated by the traditional feedback control error. The advantage of the proposed model is that it does not require calibration and depth information and achieves robust visual servoing in a variety of environments and targets without any parameter fine tuning. We present comprehensive evaluation of the approach and comparison with other deep learning architectures as well as classical visual servoing methods in visually realistic simulation environment [1]. The presented model overcomes the brittleness of classical visual servoing based methods and achieves significantly higher generalization capability compared to the previous learning approaches. 
    more » « less
  5. We present a method for joint alignment of sparse in-the-wild image collections of an object category. Most prior works assume either ground-truth keypoint annotations or a large dataset of images of a single object category. However, neither of the above assumptions hold true for the long-tail of the objects present in the world. We present a self-supervised technique that directly optimizes on a sparse collection of images of a particular object/object category to obtain consistent dense correspondences across the collection. We use pairwise nearest neighbors obtained from deep features of a pre-trained vision transformer (ViT) model as noisy and sparse keypoint matches and make them dense and accurate matches by optimizing a neural network that jointly maps the image collection into a learned canonical grid. Experiments on CUB, SPair-71k and PF-Willow benchmarks demonstrate that our method can produce globally consistent and higher quality correspondences across the image collection when compared to existing self-supervised methods. Code and other material will be made available at https://kampta.github.io/asic. 
    more » « less