skip to main content

Title: Combining Social Science and Environmental Health Research for Community Engagement
Social science-environmental health (SS-EH) research takes many structural forms and contributes to a wide variety of topical areas. In this article we discuss the general nature of SS-EH contributions and offer a new typology of SS-EH practice that situates this type of research in a larger transdisciplinary sensibility: (1) environmental health science influenced by social science; (2) social science studies of environmental health; and (3) social science-environmental health collaborations. We describe examples from our own and others’ work and we discuss the central role that research centers, training programs, and conferences play in furthering SS-EH research. We argue that the third form of SS-EH research, SS-EH collaborations, offers the greatest potential for improving public and environmental health, though such collaborations come with important challenges and demand constant reflexivity on the part of researchers.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
International Journal of Environmental Research and Public Health
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. High levels of stress and anxiety are common amongst college students, particularly engineering students. Students report lack of sleep, grades, competition, change in lifestyle, and other significant stressors throughout their undergraduate education (1, 2). Stress and anxiety have been shown to negatively impact student experience (3-6), academic performance (6-8), and retention (9). Previous studies have focused on identifying factors that cause individual students stress while completing undergraduate engineering degree programs (1). However, it not well-understood how a culture of stress is perceived and is propagated in engineering programs or how this culture impacts student levels of identification with engineering. Further, the impact of student stress has not been directly considered in engineering regarding recruitment, retention, and success. Therefore, our guiding research question is: Does the engineering culture create stress for students that hinder their engineering identity development? To answer our research question, we designed a sequential mixed methods study with equal priority of quantitative survey data and qualitative individual interviews. Our study participants are undergraduate engineering students across all levels and majors at a large, public university. Our sample goal is 2000 engineering student respondents. We combined three published surveys to build our quantitative data collection instrument, including the Depressionmore »Anxiety Stress Scales (DASS), Identification with engineering subscale, and Engineering Department Inclusion Level subscale. The objective of the quantitative instrument is to illuminate individual perceptions of the existence of an engineering stress culture (ESC) and create an efficient tool to measure the impact ESC on engineering identity development. Specifically, we seek to understand the relationships among the following constructs; 1) identification with engineering, 2) stress and anxiety, and 3) feelings of inclusion within their department. The focus of this paper presents the results of the pilot of the proposed instrument with 20 participants and a detailed data collection and analysis process. In an effort to validate our instrument, we conducted a pilot study to refine our data collection process and the results will guide the data collection for the larger study. In addition to identifying relationships among construct, the survey data will be further analyzed to specify which demographics are mediating or moderating factors of these relationships. For example, does a student’s 1st generation status influence their perception of stress or engineering identity development? Our analysis may identify discipline-specific stressors and characterize culture components that promote student anxiety and stress. Our objective is to validate our survey instrument and use it to inform the protocol for the follow-up interviews to gain a deeper understanding of the responses to the survey instrument. Understanding what students view as stressful and how students identify stress as an element of program culture will support the development of interventions to mitigate student stress. References 1. Schneider L (2007) Perceived stress among engineering students. A Paper Presented at St. Lawrence Section Conference. Toronto, Canada. Retrieved from: www. asee. morrisville. edu. 2. Ross SE, Niebling BC, & Heckert TM (1999) Sources of stress among college students. Social psychology 61(5):841-846. 3. Goldman CS & Wong EH (1997) Stress and the college student. Education 117(4):604-611. 4. Hudd SS, et al. (2000) Stress at college: Effects on health habits, health status and self-esteem. College Student Journal 34(2):217-228. 5. Macgeorge EL, Samter W, & Gillihan SJ (2005) Academic Stress, Supportive Communication, and Health A version of this paper was presented at the 2005 International Communication Association convention in New York City. Communication Education 54(4):365-372. 6. Burt KB & Paysnick AA (2014) Identity, stress, and behavioral and emotional problems in undergraduates: Evidence for interaction effects. Journal of college student development 55(4):368-384. 7. Felsten G & Wilcox K (1992) Influences of stress and situation-specific mastery beliefs and satisfaction with social support on well-being and academic performance. Psychological Reports 70(1):291-303. 8. Pritchard ME & Wilson GS (2003) Using emotional and social factors to predict student success. Journal of college student development 44(1):18-28. 9. Zhang Z & RiCharde RS (1998) Prediction and Analysis of Freshman Retention. AIR 1998 Annual Forum Paper.« less
  2. Existing collaborations among public health practitioners, veterinarians, and ecologists do not sufficiently consider illegal wildlife trade in their surveillance, biosafety, and security (SB&S) efforts even though the risks to health and biodiversity from these threats are significant. We highlight multiple cases to illustrate the risks posed by existing gaps in understanding the intersectionality of the illegal wildlife trade and zoonotic disease transmission. We argue for more integrative science in support of decision-making using the One Health approach. Opportunities abound to apply transdisciplinary science to sustainable wildlife trade policy and programming, such as combining on-the-ground monitoring of health, environmental, and social conditions with an understanding of the operational and spatial dynamics of illicit wildlife trade. We advocate for (1) a surveillance sample management system for enhanced diagnostic efficiency in collaboration with diverse and local partners that can help establish new or link existing surveillance networks, outbreak analysis, and risk mitigation strategies; (2) novel analytical tools and decision support models that can enhance self-directed local livelihoods by addressing monitoring, detection, prevention, interdiction, and remediation; (3) enhanced capacity to promote joint SB&S efforts that can encourage improved human and animal health, timely reporting, emerging disease detection, and outbreak response; and, (4) enhanced monitoringmore »of illicit wildlife trade and supply chains across the heterogeneous context within which they occur. By integrating more diverse scientific disciplines, and their respective scientists with indigenous people and local community insight and risk assessment data, we can help promote a more sustainable and equitable wildlife trade.« less
  3. Practice and research collaborations in the disaster domain have the potential to improve emergency management practices while also advancing disaster science theory. However, they also pose challenges as practitioners and researchers each have their own culture, history, values, incentives, and processes that do not always facilitate collaboration. In this paper, we reflect on a 6-month practice and research collaboration, where researchers and practitioners worked together to craft a social media monitoring system for emergency managers in response to the COVID-19 pandemic. The challenges we encountered in this project fall into two broad categories, job-related and timescale challenges. Using prior research on team science as a guide, we discuss several challenges we encountered in these two categories and show how our team sought to overcome them. We conclude with a set of best practices for improving practice and research collaborations.
  4. In this manuscript, we discuss relevant socioeconomic factors for developing and implementing sensor analytic point solutions (SNAPS) as point-of-care tools to serve impoverished communities. The distinct economic, environmental, cultural, and ethical paradigms that affect economically disadvantaged users add complexity to the process of technology development and deployment beyond the science and engineering issues. We begin by contextualizing the environmental burden of disease in select low-income regions around the world, including environmental hazards at work, home, and the broader community environment, where SNAPS may be helpful in the prevention and mitigation of human exposure to harmful biological vectors and chemical agents. We offer examples of SNAPS designed for economically disadvantaged users, specifically for supporting decision-making in cases of tuberculosis (TB) infection and mercury exposure. We follow-up by discussing the economic challenges that are involved in the phased implementation of diagnostic tools in low-income markets and describe a micropayment-based systems-as-a-service approach (pay-a-penny-per-use—PAPPU), which may be catalytic for the adoption of low-end, low-margin, low-research, and the development SNAPS. Finally, we provide some insights into the social and ethical considerations for the assimilation of SNAPS to improve health outcomes in marginalized communities.
  5. Mapping of spatial hotspots, i.e., regions with significantly higher rates of generating cases of certain events (e.g., disease or crime cases), is an important task in diverse societal domains, including public health, public safety, transportation, agriculture, environmental science, and so on. Clustering techniques required by these domains differ from traditional clustering methods due to the high economic and social costs of spurious results (e.g., false alarms of crime clusters). As a result, statistical rigor is needed explicitly to control the rate of spurious detections. To address this challenge, techniques for statistically-robust clustering (e.g., scan statistics) have been extensively studied by the data mining and statistics communities. In this survey, we present an up-to-date and detailed review of the models and algorithms developed by this field. We first present a general taxonomy for statistically-robust clustering, covering key steps of data and statistical modeling, region enumeration and maximization, and significance testing. We further discuss different paradigms and methods within each of the key steps. Finally, we highlight research gaps and potential future directions, which may serve as a stepping stone in generating new ideas and thoughts in this growing field and beyond.