skip to main content


Title: Effect of synaptic cell-to-cell transmission and recombination on the evolution of double mutants in HIV
Recombination in HIV infection can impact virus evolution in vivo in complex ways, as has been shown both experimentally and mathematically. The effect of free virus versus synaptic, cell-to-cell transmission on the evolution of double mutants, however, has not been investigated. Here, we do so by using a stochastic agent-based model. Consistent with data, we assume spatial constraints for synaptic but not for free-virus transmission. Two important effects of the viral spread mode are observed: (i) for disadvantageous mutants, synaptic transmission protects against detrimental effects of recombination on double mutant persistence. Under free virus transmission, recombination increases double mutant levels for negative epistasis, but reduces them for positive epistasis. This reduction for positive epistasis is much diminished under predominantly synaptic transmission, and recombination can, in fact, lead to increased mutant levels. (ii) The mode of virus spread also directly influences the evolutionary fate of double mutants. For disadvantageous mutants, double mutant production is the predominant driving force, and hence synaptic transmission leads to highest double mutant levels due to increased transmission efficiency. For advantageous mutants, double mutant spread is the most important force, and hence free virus transmission leads to fastest invasion due to better mixing. For neutral mutants, both production and spread of double mutants are important, and hence an optimal mixture of free virus and synaptic transmission maximizes double mutant fractions. Therefore, both free virus and synaptic transmission can enhance or delay double mutant evolution. Implications for drug resistance in HIV are discussed.  more » « less
Award ID(s):
1662146
NSF-PAR ID:
10189075
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the Royal Society interface
Volume:
17
Issue:
164
ISSN:
1742-5689
Page Range / eLocation ID:
20190832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pascual, Mercedes (Ed.)
    To study viral evolutionary processes within patients, mathematical models have been instrumental. Yet, the need for stochastic simulations of minority mutant dynamics can pose computational challenges, especially in heterogeneous systems where very large and very small sub-populations coexist. Here, we describe a hybrid stochastic-deterministic algorithm to simulate mutant evolution in large viral populations, such as acute HIV-1 infection, and further include the multiple infection of cells. We demonstrate that the hybrid method can approximate the fully stochastic dynamics with sufficient accuracy at a fraction of the computational time, and quantify evolutionary end points that cannot be expressed by deterministic models, such as the mutant distribution or the probability of mutant existence at a given infected cell population size. We apply this method to study the role of multiple infection and intracellular interactions among different virus strains (such as complementation and interference) for mutant evolution. Multiple infection is predicted to increase the number of mutants at a given infected cell population size, due to a larger number of infection events. We further find that viral complementation can significantly enhance the spread of disadvantageous mutants, but only in select circumstances: it requires the occurrence of direct cell-to-cell transmission through virological synapses, as well as a substantial fitness disadvantage of the mutant, most likely corresponding to defective virus particles. This, however, likely has strong biological consequences because defective viruses can carry genetic diversity that can be incorporated into functional virus genomes via recombination. Through this mechanism, synaptic transmission in HIV might promote virus evolvability. 
    more » « less
  2. Abstract

    The infection of cells by multiple copies of a given virus can impact viral evolution in a variety of ways, yet some of the most basic evolutionary dynamics remain underexplored. Using computational models, we investigate how infection multiplicity affects the fixation probability of mutants, the rate of mutant generation, and the timing of mutant invasion. An important insight from these models is that for neutral and disadvantageous phenotypes, rare mutants initially enjoy a fitness advantage in the presence of multiple infection of cells. This arises because multiple infection allows the rare mutant to enter more target cells and to spread faster, while it does not accelerate the spread of the resident wild-type virus. The rare mutant population can increase by entry into both uninfected and wild-type-infected cells, while the established wild-type population can initially only grow through entry into uninfected cells. Following this initial advantageous phase, the dynamics are governed by drift or negative selection, respectively, and a higher multiplicity reduces the chances that mutants fix in the population. Hence, while increased infection multiplicity promotes the presence of neutral and disadvantageous mutants in the short-term, it makes it less likely in the longer term. We show how these theoretical insights can be useful for the interpretation of experimental data on virus evolution at low and high multiplicities. The dynamics explored here provide a basis for the investigation of more complex viral evolutionary processes, including recombination, reassortment, as well as complementary/inhibitory interactions.

     
    more » « less
  3. null (Ed.)
    Abstract Recombination has been shown to contribute to human immunodeficiency virus-1 (HIV-1) evolution in vivo, but the underlying dynamics are extremely complex, depending on the nature of the fitness landscapes and of epistatic interactions. A less well-studied determinant of recombinant evolution is the mode of virus transmission in the cell population. HIV-1 can spread by free virus transmission, resulting largely in singly infected cells, and also by direct cell-to-cell transmission, resulting in the simultaneous infection of cells with multiple viruses. We investigate the contribution of these two transmission pathways to recombinant evolution, by applying mathematical models to in vitro experimental data on the growth of fluorescent reporter viruses under static conditions (where both transmission pathways operate), and under gentle shaking conditions, where cell-to-cell transmission is largely inhibited. The parameterized mathematical models are then used to extrapolate the viral evolutionary dynamics beyond the experimental settings. Assuming a fixed basic reproductive ratio of the virus (independent of transmission pathway), we find that recombinant evolution is fastest if virus spread is driven only by cell-to-cell transmission and slows down if both transmission pathways operate. Recombinant evolution is slowest if all virus spread occurs through free virus transmission. This is due to cell-to-cell transmission 1, increasing infection multiplicity; 2, promoting the co-transmission of different virus strains from cell to cell; and 3, increasing the rate at which point mutations are generated as a result of more reverse transcription events. This study further resulted in the estimation of various parameters that characterize these evolutionary processes. For example, we estimate that during cell-to-cell transmission, an average of three viruses successfully integrated into the target cell, which can significantly raise the infection multiplicity compared to free virus transmission. In general, our study points towards the importance of infection multiplicity and cell-to-cell transmission for HIV evolution. 
    more » « less
  4. Bone morphogenetic protein (BMP) signaling regulates many different developmental and homeostatic processes in metazoans. The BMP pathway is conserved in Caenorhabditis elegans, and is known to regulate body size and mesoderm development. We have identified the C. elegans smoc-1 (Secreted MOdular Calcium-binding protein-1) gene as a new player in the BMP pathway. smoc-1(0) mutants have a small body size, while overexpression of smoc-1 leads to a long body size and increased expression of the RAD-SMAD (reporter acting downstream of SMAD) BMP reporter, suggesting that SMOC-1 acts as a positive modulator of BMP signaling. Using double-mutant analysis, we showed that SMOC-1 antagonizes the function of the glypican LON-2 and acts through the BMP ligand DBL-1 to regulate BMP signaling. Moreover, SMOC-1 appears to specifically regulate BMP signaling without significant involvement in a TGFβ-like pathway that regulates dauer development. We found that smoc-1 is expressed in multiple tissues, including cells of the pharynx, intestine, and posterior hypodermis, and that the expression of smoc-1 in the intestine is positively regulated by BMP signaling. We further established that SMOC-1 functions cell nonautonomously to regulate body size. Human SMOC1 and SMOC2 can each partially rescue the smoc-1(0) mutant phenotype, suggesting that SMOC-1's function in modulating BMP signaling is evolutionarily conserved. Together, our findings highlight a conserved role of SMOC proteins in modulating BMP signaling in metazoans. 
    more » « less
  5. Abstract

    In the secondary lymphoid tissues, human immunodeficiency virus (HIV) can replicate both in the follicular and the extrafollicular compartments. Yet, virus is concentrated in the follicular compartment in the absence of antiretroviral therapy, in part due to the lack of cytotoxic T lymphocyte (CTL)-mediated activity there. CTL home to the extrafollicular compartment, where they can suppress virus load to relatively low levels. We use mathematical models to show that this compartmentalization can explain seemingly counterintuitive observations. First, it can explain the observed constancy of the viral decline slope during antiviral therapy in the peripheral blood, irrespective of the presence of CTL in SIV-infected macaques, under the assumption that CTL-mediated lysis significantly contributes to virus suppression. Second, it can account for the relatively long times it takes for CTL escape mutants to emerge during chronic infection even if CTL-mediated lysis is responsible for virus suppression. The reason is the heterogeneity in CTL activity, and the consequent heterogeneity in selection pressure between the follicular and extrafollicular compartments. Hence, to understand HIV dynamics more thoroughly, this analysis highlights the importance of measuring virus populations separately in the extrafollicular and follicular compartments rather than using virus load in peripheral blood as an observable; this hides the heterogeneity between compartments that might be responsible for the particular patterns seen in the dynamics and evolution of the HIV in vivo.

     
    more » « less