The effect of a mutation on the organism often depends on what other mutations are already present in its genome. Geneticists refer to such mutational interactions as epistasis. Pairwise epistatic effects have been recognized for over a century, and their evolutionary implications have received theoretical attention for nearly as long. However, pairwise epistatic interactions themselves can vary with genomic background. This is called higher-order epistasis, and its consequences for evolution are much less well understood. Here, we assess the influence that higher-order epistasis has on the topography of 16 published, biological fitness landscapes. We find that on average, their effects on fitness landscape declines with order, and suggest that notable exceptions to this trend may deserve experimental scrutiny. We conclude by highlighting opportunities for further theoretical and experimental work dissecting the influence that epistasis of all orders has on fitness landscape topography and on the efficiency of evolution by natural selection.
more »
« less
Limits to detecting epistasis in the fitness landscape of HIV
The rapid evolution of HIV is constrained by interactions between mutations which affect viral fitness. In this work, we explore the role of epistasis in determining the mutational fitness landscape of HIV for multiple drug target proteins, including Protease, Reverse Transcriptase, and Integrase. Epistatic interactions between residues modulate the mutation patterns involved in drug resistance, with unambiguous signatures of epistasis best seen in the comparison of the Potts model predicted and experimental HIV sequence “prevalences” expressed as higher-order marginals (beyond triplets) of the sequence probability distribution. In contrast, experimental measures of fitness such as viral replicative capacities generally probe fitness effects of point mutations in a single background, providing weak evidence for epistasis in viral systems. The detectable effects of epistasis are obscured by higher evolutionary conservation at sites. While double mutant cycles in principle, provide one of the best ways to probe epistatic interactions experimentally without reference to a particular background, we show that the analysis is complicated by the small dynamic range of measurements. Overall, we show that global pairwise interaction Potts models are necessary for predicting the mutational landscape of viral proteins.
more »
« less
- Award ID(s):
- 1934848
- PAR ID:
- 10355701
- Editor(s):
- Gallicchio, Emilio
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0262314
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Elucidating how individual mutations affect the protein energy landscape is crucial for understanding how proteins evolve. However, predicting mutational effects remains challenging because of epistasis—the nonadditive interactions between mutations. Here, we investigate the biophysical mechanism of strain-specific epistasis in the nonstructural protein 1 (NS1) of influenza A viruses (IAVs). We integrate structural, kinetic, thermodynamic, and conformational dynamics analyses of four NS1s of influenza strains that emerged between 1918 and 2004. Although functionally near-neutral, strain-specific NS1 mutations exhibit long-range epistatic interactions with residues at the p85β-binding interface. We reveal that strain-specific mutations reshaped the NS1 energy landscape during evolution. Using NMR spin dynamics, we find that the strain-specific mutations altered the conformational dynamics of the hidden network of tightly packed residues, underlying the evolution of long-range epistasis. This work shows how near-neutral mutations silently alter the biophysical energy landscapes, resulting in diverse background effects during molecular evolution.more » « less
-
The course of evolution is strongly shaped by interaction between mutations. Such epistasis can yield rugged sequence–function maps and constrain the availability of adaptive paths. While theoretical intuition is often built on global statistics of large, homogeneous model landscapes, mutagenesis measurements necessarily probe a limited neighborhood of a reference genotype. It is unclear to what extent local topography of a real epistatic landscape represents its global shape. Here, we demonstrate that epistatic landscapes can be heterogeneously rugged and this heterogeneity may render biomolecules more evolvable. By characterizing a multipeaked fitness landscape of a SARS-CoV-2 antibody mutant library, we show that heterogeneous ruggedness arises from sparse epistatic hotspots, whose mutation impacts the fitness effect of numerous sequence sites. Surprisingly, mutating an epistatic hotspot may enhance, rather than reduce, the accessibility of the fittest genotype, while increasing the overall ruggedness. Further, migratory constraints in real space alleviate mutational constraints in sequence space, which not only diversify direct paths taken but may also turn a road-blocking fitness peak into a stepping stone leading toward the global optimum. Our results suggest that a hierarchy of epistatic hotspots may organize the fitness landscape in such a way that path-orienting ruggedness confers global smoothness.more » « less
-
Abstract Potts models and variational autoencoders (VAEs) have recently gained popularity as generative protein sequence models (GPSMs) to explore fitness landscapes and predict mutation effects. Despite encouraging results, current model evaluation metrics leave unclear whether GPSMs faithfully reproduce the complex multi-residue mutational patterns observed in natural sequences due to epistasis. Here, we develop a set of sequence statistics to assess the “generative capacity” of three current GPSMs: the pairwise Potts Hamiltonian, the VAE, and the site-independent model. We show that the Potts model’s generative capacity is largest, as the higher-order mutational statistics generated by the model agree with those observed for natural sequences, while the VAE’s lies between the Potts and site-independent models. Importantly, our work provides a new framework for evaluating and interpreting GPSM accuracy which emphasizes the role of higher-order covariation and epistasis, with broader implications for probabilistic sequence models in general.more » « less
-
As an adapting population traverses the fitness landscape, its local neighborhood (i.e., the collection of fitness effects of single-step mutations) can change shape because of interactions with mutations acquired during evolution. These changes to the distribution of fitness effects can affect both the rate of adaptation and the accumulation of deleterious mutations. However, while numerous models of fitness landscapes have been proposed in the literature, empirical data on how this distribution changes during evolution remains limited. In this study, we directly measure how the fitness landscape neighborhood changes during laboratory adaptation. Using a barcode-based mutagenesis system, we measure the fitness effects of 91 specific gene disruption mutations in genetic backgrounds spanning 8000–10,000 generations of evolution in two constant environments. We find that the mean of the distribution of fitness effects decreases in one environment, indicating a reduction in mutational robustness, but does not change in the other. We show that these distribution-level patterns result from differences in the relative frequency of certain patterns of epistasis at the level of individual mutations, including fitness-correlated and idiosyncratic epistasis.more » « less
An official website of the United States government

