skip to main content

Title: What drives our behaviors in buildings? A review on occupant interactions with building systems from the lens of behavioral theories
Occupant behavior has a significant impact on building systems’ operations and efficiency. As a result, several innovative approaches have been introduced to quantify the dynamics of occupants within indoor environments, such as interactions with different building systems and the impact of various feedback and interventions to reduce the building energy consumption. To achieve this, researchers have highlighted the importance of reducing energy consumption without impacting occupant comfort. As a result, there is an increasing body of research evaluating how different theories of behavior across a variety of disciplines can explain occupant interactions with building systems. Future progress in this area calls for an in-depth understanding of behavioral theories in explaining occupant interactions with different building systems. In this paper, we have used a structured literature review approach to investigate how different psychological, sociological, and economic theories have been applied to explain occupant interactions with heating and cooling (HVAC systems), opening windows and ventilation, lighting and shading, electronic appliances, domestic hot water, as well as energy conservation behaviors. Throughout the paper, we identify the most common theories and methodologies applied within the existing research, general findings related to how occupants interact with different building systems, as well as a number of more » identified gaps within the literature. Finally, we provide a discussion on directions for future research studies in this area under each building system. « less
Authors:
Award ID(s):
1823325
Publication Date:
NSF-PAR ID:
10189172
Journal Name:
Building and environment
Volume:
179
ISSN:
0360-1323
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Adaptive interactions between building occupants and their surrounding environments affect both energy use and environmental quality, as demonstrated by a large body of modeling research that quantifies the impacts of occupant behavior on building operations. Yet, available occupant field data are insufficient to explore the mechanisms that drive this interaction. This paper introduces data from a one year study of 24 U.S. office occupants that recorded a comprehensive set of possible exogenous and endogenous drivers of personal comfort and behavior over time. The longitudinal data collection protocol merges individual thermal comfort, preference, and behavior information from online daily surveys with datalogger readings of occupants’ local thermal environments and control states, yielding 2503 survey responses alongside tens of thousands of concurrent behavior and environment measurements. These data have been used to uncover links between the built environment, personal variables, and adaptive actions, and the data contribute to international research collaborations focused on understanding the human-building interaction.

  2. Active shooter events are not emergencies that can be reasonably anticipated. However, these events do occur more than we think, and there is a critical need for an effective emergency preparedness plan that can increase the likelihood of saving lives and reducing casualties in the event of an active shooting incident. There has been a major concern about the lack of tools available to allow for modeling and simulation of human behavior during emergency response training. Over the past few decades, virtual reality-based training for emergency response and decision making has been recognized as a novel alternative for disaster preparedness. This paper presents an immersive virtual reality (VR) training module for active shooter events for a building emergency response. There are two immersive active shooter modules developed: occupant’s module and Security personnel module. We have developed an immersive virtual reality training module for active shooter events using an Oculus for the course of action, visualization, and situational awareness for active shooter events. The immersive environment is implemented in Unity 3D where the user has an option to enter the environment as security personnel or as an occupant in the building. The immersive VR training module offers a unique platform formore »emergency response and decision making training. The platform allows for collecting data on different what-if scenarios in response to active shooter events that impact the actions of security personnel and occupants in a building. The data collected can be used to educate security personnel on how to reduce response times. Moreover, security personnel can be trained to respond to a variety of emergencies safely and securely without ever being exposed to real-world dangers.« less
  3. Abstract This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants’ schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting.
  4. Abstract

    Water/oxide interfaces are ubiquitous on earth and show significant influence on many chemical processes. For example, understanding water and solute adsorption as well as catalytic water splitting can help build better fuel cells and solar cells to overcome our looming energy crisis; the interaction between biomolecules and water/oxide interfaces is one hypothesis to explain the origin of life. However, knowledge in this area is still limited due to the difficulty of studying water/solid interfaces. As a result, research using increasingly sophisticated experimental techniques and computational simulations has been carried out in recent years. Although it is difficult for experimental techniques to provide detailed microscopic structural information, molecular dynamics (MD) simulations have satisfactory performance. In this review, we discuss classical and ab initio MD simulations of water/oxide interfaces. Generally, we are interested in the following questions: How do solid surfaces perturb interfacial water structure? How do interfacial water molecules and adsorbed solutes affect solid surfaces and how do interfacial environments affect solvent and solute behavior? Finally, we discuss progress in the application of neural network potential based MD simulations, which offer a promising future because this approach has already enabled ab initio level accuracy for very large systems and longmore »trajectories.

    This article is categorized under:

    Theoretical and Physical Chemistry > Spectroscopy

    Molecular and Statistical Mechanics > Molecular Interactions

    Structure and Mechanism > Molecular Structures

    « less
  5. ABSTRACT Over the last 30 years over 30,000 articles and chapters have been published related to mentoring, with over 40% focused on mentoring students in STEM disciplines. What have we learned from this voluminous literature and what concepts stand out as needing further attention? A review of the literature indicates that mentoring of underrepresented minoritized (URM) students involve attention to the professional development of these students, active engagement in research activities, and a willingness and ability to develop a strong relationship that supersedes the aspects of traditional mentoring activities. Psychology graduate programs have long been known to teach and develop the skills necessary to help students foster strong therapeutic relationships. The foundational interpersonal skills taught in domains of psychology (e.g., counseling psychology, social psychology) are directly relevant to other relationship-building scenarios, such as mentor/mentee dyads. Budding psychologists typically learn therapeutic techniques that help build trusting relationships with clients that hold different identities than their own. But these skills apply beyond client/therapist relations and could be used to inform intensive/inclusive mentoring approaches with URM students, especially when the mentor holds a different identity. The training techniques proposed can be adapted for both formal and informal forms of mentoring and may enhancemore »a student’s sense of belonging, which is the strongest predictor of science identity development and success in STEM. This paper will focus on elements necessary to develop a strong relationship between URM students and their mentors based on the development of a therapeutic relationship using concepts from theories related to the Common Factors (Rosenzweig, 1936). These theories posit that the development of a meaningful client/therapist relationship and behavior change requires attention to four common factors: therapist qualities or in this case mentor qualities, change processes or how students are trained, treatment structures which are specific techniques, and development of a strong relationship. These factors can easily be applied to create a truly inclusive mentoring model.« less