skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Generalized Carrier–Greenspan Transform for the Shallow Water System with Arbitrary Initial and Boundary Conditions
We put forward a solution to the initial boundary value (IBV) problem for the nonlinear shallow water system in inclined channels of arbitrary cross section by means of the generalized Carrier–Greenspan hodograph transform (Rybkin et al. in J Fluid Mech, 748:416–432, 2014). Since the Carrier–Greenspan transform, while linearizing the shallow water system, seriously entangles the IBV in the hodograph plane, all previous solutions required some restrictive assumptions on the IBV conditions, e.g., zero initial velocity, smallness of boundary conditions. For arbitrary non-breaking initial conditions in the physical space, we present an explicit formula for equivalent IBV conditions in the hodograph plane, which can readily be treated by conventional methods. Our procedure, which we call the method of data projection, is based on the Taylor formula and allows us to reduce the transformed IBV data given on curves in the hodograph plane to the equivalent data on lines. Our method works equally well for any inclined bathymetry (not only plane beaches) and, moreover, is fully analytical for U-shaped bays. Numerical simulations show that our method is very robust and can be used to give express forecasting of tsunami wave inundation in narrow bays and fjords.  more » « less
Award ID(s):
1716975
PAR ID:
10189228
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Water Waves
ISSN:
2523-367X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work studies the initial-boundary value problem (ibvp) of the two-dimensional nonlinear Schrödinger equation on the half-plane with initial data in Sobolev spaces and Neumann or Robin boundary data in appropriate Bourgain spaces. It establishes well-posedness in the sense of Hadamard by using the explicit solution formula for the forced linear ibvp obtained via Fokas’s unified transform, and a contraction mapping argument. 
    more » « less
  2. In this work, we investigate the two-component modified Korteweg-de Vries (mKdV) equation, which is a complete integrable system, and accepts a generalization of 4 × 4 matrix Ablowitz–Kaup–Newell-Segur (AKNS)-type Lax pair. By using of the unified transform approach, the initial-boundary value (IBV) problem of the two-component mKdV equation associated with a 4 × 4 matrix Lax pair on the half-line will be analyzed. Supposing that the solution {u1(x, t), u2(x, t)} of the two-component mKdV equation exists, we will show that it can be expressed in terms of the unique solution of a 4 × 4 matrix Riemann–Hilbert problem formulated in the complex λ-plane. Moreover, we will prove that some spectral functions s(λ) and S(λ) are not independent of each other but meet the global relationship. 
    more » « less
  3. Abstract Plate boundaries in the oceans are often poorly monitored. Though typically less remote than the deep sea, shallow marine environments with seafloor depths <0.5 km can be especially challenging for seismic experiments due to natural and anthropogenic hazards and noise sources that can affect instrument survival and data quality. The Queen Charlotte fault (QCF) is part of a transform plate boundary that follows the continental shelf of the Alaska Panhandle and central British Columbia. This fault system accommodates dextral slip between the Pacific and North American plates and has hosted several historic Mw > 7 earthquakes. In August 2021, we deployed 28 broadband ocean-bottom seismometers (OBSs) along the central QCF for the “Transform Obliquity along the Queen Charlotte Fault and Earthquake Study” (TOQUES) to investigate fault architecture and local seismicity. Deployment depths varied between 0.2 and 2.5 km below sea level, with half of the instruments deployed in shallow water (<0.5 km depth). We describe the scientific motivations for the TOQUES broadband OBS array, present data metrics, and discuss factors that influence data quality and instrument survival. We show that many opportunities exist for scientific study of shallow marine environments and the solid earth. Despite concerns that shallow water was responsible for the risk of data or instrument loss, direct relationships between instrument success and water depth are inconclusive. Rather, instrument success may be more related to the ability of different instrument designs to withstand shallow-water conditions. 
    more » « less
  4. Abstract Plate motion obliquity along the dominantly transform Queen Charlotte plate boundary (QCPB) peaks offshore Haida Gwaii. To investigate the effects of obliquity on plate boundary deformation, we analyze continuous seismic waveforms from temporary and permanent stations from 1998 to 2020 to generate a catalog of ∼50,000 earthquakes across Haida Gwaii. We use an automated technique based on auto‐regressive phase detection and onset estimation to obtain the initial seismic catalog, integrate existing catalogs, invert for 3D velocity structure using data from the best constrained period, and relocate the entire catalog using the new 3D velocity model. We investigate the seismically active sections of the transcurrent Queen Charlotte fault (QCF), noting that little seismicity locates directly along its bathymetrically defined trace. Instead, seismicity illuminates a complex system of segmented structures with variable geometries along strike. Other clusters highlight active shallow faults within the highly deformed Queen Charlotte terrace. Few aftershocks appear on the thrust plane of the 2012Mw7.8 Haida Gwaii earthquake except near its inferred intersection with the QCF at 15–20 km depths, suggesting elevated residual stress at the juncture of slip‐partitioning. Deep crustal seismicity (up to ∼20 km depths) beneath central Haida Gwaii aligned parallel to the strike of the thrust plane may represent landward underthrusting of the Pacific plate. Our results suggest possible coseismic strike‐slip rupture on the QCF during the 2012 earthquake and add support to the thesis that highly oblique transform boundaries are viable settings for subduction initiation. 
    more » « less
  5. null (Ed.)
    Abstract We implement the unified transform method of Fokas as a numerical method to solve linear evolution partial differential equations on the half-line. The method computes the solution at any $$x$$ and $$t$$ without spatial discretization or time stepping. With the help of contour deformations and oscillatory integration techniques, the method’s complexity does not increase for large $x,t$ and the method is more accurate as $x,t$ increase (absolute errors are smaller, relative errors are bounded). Our goal is to make no assumptions on the functional form of the initial or boundary functions beyond some decay and smoothness, while maintaining high accuracy in a large region of the $(x,t)$ plane. 
    more » « less