skip to main content


Title: A Dataset and an Approach for Identity Resolution of 38 Million Author IDs extracted from 2B Git Commits
The data collected from open source projects provide means to model large software ecosystems, but often suffer from data quality issues, specifically, multiple author identification strings in code commits might actually be associated with one developer. While many methods have been proposed for addressing this problem, they are either heuristics requiring manual tweaking, or require too much calculation time to do pairwise comparisons for 38M author IDs in, for example, the World of Code collection. In this paper, we propose a method that finds all author IDs belonging to a single developer in this entire dataset, and share the list of all author IDs that were found to have aliases. To do this, we first create blocks of potentially connected author IDs and then use a machine learning model to predict which of these potentially related IDs belong to the same developer. We processed around 38 million author IDs and found around 14.8 million IDs to have an alias, which belong to 5.4 million different developers, with the median number of aliases being 2 per developer. This dataset can be used to create more accurate models of developer behaviour at the entire OSS ecosystem level and can be used to provide a service to rapidly resolve new author IDs.  more » « less
Award ID(s):
1925615 1901102 1633437
NSF-PAR ID:
10189284
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Working Conference on Mining Software Repositories
ISSN:
2160-1860
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evidence shows that developer reputation is extremely important when accepting pull requests or resolving reported issues. It is particularly salient in Free/Libre Open Source Software since the developers are distributed around the world, do not work for the same organization and, in most cases, never meet face to face. The existing solutions to expose developer reputation tend to be forge specific (GitHub), focus on activity instead of impact, do not leverage social or technical networks, and do not correct often misspelled developer identities. We aim to remedy this by amalgamating data from all public Git repositories, measuring the impact of developer work, expose developer's collaborators, and correct notoriously problematic developer identity data. We leverage World of Code (WoC), a collection of an almost complete (and continuously updated) set of Git repositories by first allowing developers to select which of the 34 million(M) Git commit author IDs belong to them and then generating their profiles by treating the selected collection of IDs as that single developer. As a side-effect, these selections serve as a training set for a supervised learning algorithm that merges multiple identity strings belonging to a single individual. As we evaluate the tool and the proposed impact measure, we expect to build on these findings to develop reputation badges that could be associated with pull requests and commits so developers could easier trust and prioritize them. 
    more » « less
  2. The salt controversy is the public health debate about whether a population-level salt reduction is beneficial. This dataset covers 82 publications--14 systematic review reports (SRRs) and 68 primary study reports (PSRs)--addressing the effect of sodium intake on cerebrocardiovascular disease or mortality. These present a snapshot of the status of the salt controversy as of September 2014 according to previous work by epidemiologists: The reports and their opinion classification (for, against, and inconclusive) were from Trinquart et al. (2016) (Trinquart, L., Johns, D. M., & Galea, S. (2016). Why do we think we know what we know? A metaknowledge analysis of the salt controversy. International Journal of Epidemiology, 45(1), 251–260. https://doi.org/10.1093/ije/dyv184 ), which collected 68 PSRs, 14 SRRs, 11 clinical guideline reports, and 176 comments, letters, or narrative reviews. Note that our dataset covers only the 68 PSRs and 14 SRRs from Trinquart et al. 2016, not the other types of publications, and it adds additional information noted below. This dataset can be used to construct the inclusion network and the co-author network of the 14 SRRs and 68 PSRs. A PSR is "included" in an SRR if it is considered in the SRR's evidence synthesis. Each included PSR is cited in the SRR, but not all references cited in an SRR are included in the evidence synthesis or PSRs. Based on which PSRs are included in which SRRs, we can construct the inclusion network. The inclusion network is a bipartite network with two types of nodes: one type represents SRRs, and the other represents PSRs. In an inclusion network, if an SRR includes a PSR, there is a directed edge from the SRR to the PSR. The attribute file (report_list.csv) includes attributes of the 82 reports, and the edge list file (inclusion_net_edges.csv) contains the edge list of the inclusion network. Notably, 11 PSRs have never been included in any SRR in the dataset. They are unused PSRs. If visualized with the inclusion network, they will appear as isolated nodes. We used a custom-made workflow (Fu, Y. (2022). Scopus author info tool (1.0.1) [Python]. https://github.com/infoqualitylab/Scopus_author_info_collection ) that uses the Scopus API and manual work to extract and disambiguate authorship information for the 82 reports. The author information file (salt_cont_author.csv) is the product of this workflow and can be used to compute the co-author network of the 82 reports. We also provide several other files in this dataset. We collected inclusion criteria (the criteria that make a PSR eligible to be included in an SRR) and recorded them in the file systematic_review_inclusion_criteria.csv. We provide a file (potential_inclusion_link.csv) recording whether a given PSR had been published as of the search date of a given SRR, which makes the PSR potentially eligible for inclusion in the SRR. We also provide a bibliography of the 82 publications (supplementary_reference_list.pdf). Lastly, we discovered minor discrepancies between the inclusion relationships identified by Trinquart et al. (2016) and by us. Therefore, we prepared an additional edge list (inclusion_net_edges_trinquart.csv) to preserve the inclusion relationships identified by Trinquart et al. (2016). UPDATES IN THIS VERSION COMPARED TO V1 (Fu, Yuanxi; Hsiao, Tzu-Kun; Joshi, Manasi Ballal (2022): The Salt Controversy Systematic Review Reports and Primary Study Reports Network Dataset. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-6128763_V1) - We added two new columns in salt_cont_author.csv, "author_id_scopus" and "author_id_mannual" to indicate which author ids were from Scopus and which were assigned by us. - We corrected a few mistakes in "last_search_year," "last_search_month," and "last_search_day" column in systematic_review_inclusion_criteria.csv. - We systematically adjusted the information related to report #12 in report_list.csv, systematic_review_inclusion_criteria.csv, supplementary_reference_list.pdf, salt_cont_author.csv, and inclusion_net_edges.csv to reflect information found in Adler 2014 (Adler, A. J., Taylor, F., Martin, N., Gottlieb, S., Taylor, R. S., & Ebrahim, S. (2014). Reduced dietary salt for the prevention of cardiovascular disease. Cochrane Database of Systematic Reviews, 12. https://doi.org/10.1002/14651858.CD009217.pub3). See our explaination in section "Explanations about report #12". - We sorted the salt_cont_author.csv file by "author_id," not by "ID" (the id of the report). 
    more » « less
  3. Abstract Purpose The ability to identify the scholarship of individual authors is essential for performance evaluation. A number of factors hinder this endeavor. Common and similarly spelled surnames make it difficult to isolate the scholarship of individual authors indexed on large databases. Variations in name spelling of individual scholars further complicates matters. Common family names in scientific powerhouses like China make it problematic to distinguish between authors possessing ubiquitous and/or anglicized surnames (as well as the same or similar first names). The assignment of unique author identifiers provides a major step toward resolving these difficulties. We maintain, however, that in and of themselves, author identifiers are not sufficient to fully address the author uncertainty problem. In this study we build on the author identifier approach by considering commonalities in fielded data between authors containing the same surname and first initial of their first name. We illustrate our approach using three case studies. Design/methodology/approach The approach we advance in this study is based on commonalities among fielded data in search results. We cast a broad initial net—i.e., a Web of Science (WOS) search for a given author’s last name, followed by a comma, followed by the first initial of his or her first name (e.g., a search for ‘John Doe’ would assume the form: ‘Doe, J’). Results for this search typically contain all of the scholarship legitimately belonging to this author in the given database (i.e., all of his or her true positives), along with a large amount of noise, or scholarship not belonging to this author (i.e., a large number of false positives). From this corpus we proceed to iteratively weed out false positives and retain true positives. Author identifiers provide a good starting point—e.g., if ‘Doe, J’ and ‘Doe, John’ share the same author identifier, this would be sufficient for us to conclude these are one and the same individual. We find email addresses similarly adequate—e.g., if two author names which share the same surname and same first initial have an email address in common, we conclude these authors are the same person. Author identifier and email address data is not always available, however. When this occurs, other fields are used to address the author uncertainty problem. Commonalities among author data other than unique identifiers and email addresses is less conclusive for name consolidation purposes. For example, if ‘Doe, John’ and ‘Doe, J’ have an affiliation in common, do we conclude that these names belong the same person? They may or may not; affiliations have employed two or more faculty members sharing the same last and first initial. Similarly, it’s conceivable that two individuals with the same last name and first initial publish in the same journal, publish with the same co-authors, and/or cite the same references. Should we then ignore commonalities among these fields and conclude they’re too imprecise for name consolidation purposes? It is our position that such commonalities are indeed valuable for addressing the author uncertainty problem, but more so when used in combination. Our approach makes use of automation as well as manual inspection, relying initially on author identifiers, then commonalities among fielded data other than author identifiers, and finally manual verification. To achieve name consolidation independent of author identifier matches, we have developed a procedure that is used with bibliometric software called VantagePoint (see www.thevantagepoint.com) While the application of our technique does not exclusively depend on VantagePoint, it is the software we find most efficient in this study. The script we developed to implement this procedure is designed to implement our name disambiguation procedure in a way that significantly reduces manual effort on the user’s part. Those who seek to replicate our procedure independent of VantagePoint can do so by manually following the method we outline, but we note that the manual application of our procedure takes a significant amount of time and effort, especially when working with larger datasets. Our script begins by prompting the user for a surname and a first initial (for any author of interest). It then prompts the user to select a WOS field on which to consolidate author names. After this the user is prompted to point to the name of the authors field, and finally asked to identify a specific author name (referred to by the script as the primary author) within this field whom the user knows to be a true positive (a suggested approach is to point to an author name associated with one of the records that has the author’s ORCID iD or email address attached to it). The script proceeds to identify and combine all author names sharing the primary author’s surname and first initial of his or her first name who share commonalities in the WOS field on which the user was prompted to consolidate author names. This typically results in significant reduction in the initial dataset size. After the procedure completes the user is usually left with a much smaller (and more manageable) dataset to manually inspect (and/or apply additional name disambiguation techniques to). Research limitations Match field coverage can be an issue. When field coverage is paltry dataset reduction is not as significant, which results in more manual inspection on the user’s part. Our procedure doesn’t lend itself to scholars who have had a legal family name change (after marriage, for example). Moreover, the technique we advance is (sometimes, but not always) likely to have a difficult time dealing with scholars who have changed careers or fields dramatically, as well as scholars whose work is highly interdisciplinary. Practical implications The procedure we advance has the ability to save a significant amount of time and effort for individuals engaged in name disambiguation research, especially when the name under consideration is a more common family name. It is more effective when match field coverage is high and a number of match fields exist. Originality/value Once again, the procedure we advance has the ability to save a significant amount of time and effort for individuals engaged in name disambiguation research. It combines preexisting with more recent approaches, harnessing the benefits of both. Findings Our study applies the name disambiguation procedure we advance to three case studies. Ideal match fields are not the same for each of our case studies. We find that match field effectiveness is in large part a function of field coverage. Comparing original dataset size, the timeframe analyzed for each case study is not the same, nor are the subject areas in which they publish. Our procedure is more effective when applied to our third case study, both in terms of list reduction and 100% retention of true positives. We attribute this to excellent match field coverage, and especially in more specific match fields, as well as having a more modest/manageable number of publications. While machine learning is considered authoritative by many, we do not see it as practical or replicable. The procedure advanced herein is both practical, replicable and relatively user friendly. It might be categorized into a space between ORCID and machine learning. Machine learning approaches typically look for commonalities among citation data, which is not always available, structured or easy to work with. The procedure we advance is intended to be applied across numerous fields in a dataset of interest (e.g. emails, coauthors, affiliations, etc.), resulting in multiple rounds of reduction. Results indicate that effective match fields include author identifiers, emails, source titles, co-authors and ISSNs. While the script we present is not likely to result in a dataset consisting solely of true positives (at least for more common surnames), it does significantly reduce manual effort on the user’s part. Dataset reduction (after our procedure is applied) is in large part a function of (a) field availability and (b) field coverage. 
    more » « less
  4. To alleviate the cost of collecting and annotating large-scale "3D object" point cloud data, we propose an unsupervised learning approach to learn features from an unlabeled point cloud dataset by using part contrasting and object clustering with deep graph convolutional neural networks (GCNNs). In the contrast learning step, all the samples in the 3D object dataset are cut into two parts and put into a "part" dataset. Then a contrast learning GCNN (ContrastNet) is trained to verify whether two randomly sampled parts from the part dataset belong to the same object. In the cluster learning step, the trained ContrastNet is applied to all the samples in the original 3D object dataset to extract features, which are used to group the samples into clusters. Then another GCNN for clustering learning (ClusterNet) is trained from the orignal 3D data to predict the cluster IDs of all the training samples. The contrasting learning forces the ContrastNet to learn semantic features of objects, while the ClusterNet improves the quality of learned features by being trained to discover objects that belong to the same semantic categories by using cluster IDs. We have conducted extensive experiments to evaluate the proposed framework on point cloud classification tasks. The proposed unsupervised learning approach obtains comparable performance to the state-of-the-art with heavier shape auto-encoding unsupervised feature extraction methods. We have also tested the networks on object recognition using partial 3D data, by simulating occlusions and perspective views, and obtained practically useful results. The code of this work is publicly available at: https://github.com/lingzhang1/ContrastNet. 
    more » « less
  5. Obeid, Iyad Selesnick (Ed.)
    The Temple University Hospital EEG Corpus (TUEG) [1] is the largest publicly available EEG corpus of its type and currently has over 5,000 subscribers (we currently average 35 new subscribers a week). Several valuable subsets of this corpus have been developed including the Temple University Hospital EEG Seizure Corpus (TUSZ) [2] and the Temple University Hospital EEG Artifact Corpus (TUAR) [3]. TUSZ contains manually annotated seizure events and has been widely used to develop seizure detection and prediction technology [4]. TUAR contains manually annotated artifacts and has been used to improve machine learning performance on seizure detection tasks [5]. In this poster, we will discuss recent improvements made to both corpora that are creating opportunities to improve machine learning performance. Two major concerns that were raised when v1.5.2 of TUSZ was released for the Neureka 2020 Epilepsy Challenge were: (1) the subjects contained in the training, development (validation) and blind evaluation sets were not mutually exclusive, and (2) high frequency seizures were not accurately annotated in all files. Regarding (1), there were 50 subjects in dev, 50 subjects in eval, and 592 subjects in train. There was one subject common to dev and eval, five subjects common to dev and train, and 13 subjects common between eval and train. Though this does not substantially influence performance for the current generation of technology, it could be a problem down the line as technology improves. Therefore, we have rebuilt the partitions of the data so that this overlap was removed. This required augmenting the evaluation and development data sets with new subjects that had not been previously annotated so that the size of these subsets remained approximately the same. Since these annotations were done by a new group of annotators, special care was taken to make sure the new annotators followed the same practices as the previous generations of annotators. Part of our quality control process was to have the new annotators review all previous annotations. This rigorous training coupled with a strict quality control process where annotators review a significant amount of each other’s work ensured that there is high interrater agreement between the two groups (kappa statistic greater than 0.8) [6]. In the process of reviewing this data, we also decided to split long files into a series of smaller segments to facilitate processing of the data. Some subscribers found it difficult to process long files using Python code, which tends to be very memory intensive. We also found it inefficient to manipulate these long files in our annotation tool. In this release, the maximum duration of any single file is limited to 60 mins. This increased the number of edf files in the dev set from 1012 to 1832. Regarding (2), as part of discussions of several issues raised by a few subscribers, we discovered some files only had low frequency epileptiform events annotated (defined as events that ranged in frequency from 2.5 Hz to 3 Hz), while others had events annotated that contained significant frequency content above 3 Hz. Though there were not many files that had this type of activity, it was enough of a concern to necessitate reviewing the entire corpus. An example of an epileptiform seizure event with frequency content higher than 3 Hz is shown in Figure 1. Annotating these additional events slightly increased the number of seizure events. In v1.5.2, there were 673 seizures, while in v1.5.3 there are 1239 events. One of the fertile areas for technology improvements is artifact reduction. Artifacts and slowing constitute the two major error modalities in seizure detection [3]. This was a major reason we developed TUAR. It can be used to evaluate artifact detection and suppression technology as well as multimodal background models that explicitly model artifacts. An issue with TUAR was the practicality of the annotation tags used when there are multiple simultaneous events. An example of such an event is shown in Figure 2. In this section of the file, there is an overlap of eye movement, electrode artifact, and muscle artifact events. We previously annotated such events using a convention that included annotating background along with any artifact that is present. The artifacts present would either be annotated with a single tag (e.g., MUSC) or a coupled artifact tag (e.g., MUSC+ELEC). When multiple channels have background, the tags become crowded and difficult to identify. This is one reason we now support a hierarchical annotation format using XML – annotations can be arbitrarily complex and support overlaps in time. Our annotators also reviewed specific eye movement artifacts (e.g., eye flutter, eyeblinks). Eye movements are often mistaken as seizures due to their similar morphology [7][8]. We have improved our understanding of ocular events and it has allowed us to annotate artifacts in the corpus more carefully. In this poster, we will present statistics on the newest releases of these corpora and discuss the impact these improvements have had on machine learning research. We will compare TUSZ v1.5.3 and TUAR v2.0.0 with previous versions of these corpora. We will release v1.5.3 of TUSZ and v2.0.0 of TUAR in Fall 2021 prior to the symposium. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation’s Industrial Innovation and Partnerships (IIP) Research Experience for Undergraduates award number 1827565. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] I. Obeid and J. Picone, “The Temple University Hospital EEG Data Corpus,” in Augmentation of Brain Function: Facts, Fiction and Controversy. Volume I: Brain-Machine Interfaces, 1st ed., vol. 10, M. A. Lebedev, Ed. Lausanne, Switzerland: Frontiers Media S.A., 2016, pp. 394 398. https://doi.org/10.3389/fnins.2016.00196. [2] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Frontiers in Neuroinformatics, vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [3] A. Hamid et, al., “The Temple University Artifact Corpus: An Annotated Corpus of EEG Artifacts.” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2020, pp. 1-3. https://ieeexplore.ieee.org/document/9353647. [4] Y. Roy, R. Iskander, and J. Picone, “The NeurekaTM 2020 Epilepsy Challenge,” NeuroTechX, 2020. [Online]. Available: https://neureka-challenge.com/. [Accessed: 01-Dec-2021]. [5] S. Rahman, A. Hamid, D. Ochal, I. Obeid, and J. Picone, “Improving the Quality of the TUSZ Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2020, pp. 1–5. https://ieeexplore.ieee.org/document/9353635. [6] V. Shah, E. von Weltin, T. Ahsan, I. Obeid, and J. Picone, “On the Use of Non-Experts for Generation of High-Quality Annotations of Seizure Events,” Available: https://www.isip.picone press.com/publications/unpublished/journals/2019/elsevier_cn/ira. [Accessed: 01-Dec-2021]. [7] D. Ochal, S. Rahman, S. Ferrell, T. Elseify, I. Obeid, and J. Picone, “The Temple University Hospital EEG Corpus: Annotation Guidelines,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/tuh_eeg/annotations/. [8] D. Strayhorn, “The Atlas of Adult Electroencephalography,” EEG Atlas Online, 2014. [Online]. Availabl 
    more » « less