skip to main content


Title: Controlling three-dimensional optical fields via inverse Mie scattering
Controlling the propagation of optical fields in three dimensions using arrays of discrete dielectric scatterers is an active area of research. These arrays can create optical elements with functionalities unrealizable in conventional optics. Here, we present an inverse design method based on the inverse Mie scattering problem for producing three-dimensional optical field patterns. Using this method, we demonstrate a device that focuses 1.55-μm light into a depth-variant discrete helical pattern. The reported device is fabricated using two-photon lithography and has a footprint of 144 μm by 144 μm, the largest of any inverse-designed photonic structure to date. This inverse design method constitutes an important step toward designer free-space optics, where unique optical elements are produced for user-specified functionalities.  more » « less
Award ID(s):
1825308
NSF-PAR ID:
10189292
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
5
Issue:
10
ISSN:
2375-2548
Page Range / eLocation ID:
eaax4769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Diffractive optics have increasingly caught the attention of the scientific community. Classical diffractive optics are 2D diffractive optical elements (DOEs) and computer-generated holograms (CGHs), which modulate optical waves on a solitary transverse plane. However, potential capabilities are missed by the inherent two-dimensional nature of these devices. Previous work has demonstrated that extending the modulation from planar (2D) to volumetric (3D) enables new functionalities, such as generating space-variant functions, multiplexing in the spatial or spectral domain, or enhancing information capacity. Unfortunately, despite significant progress fueled by recent interest in metasurface diffraction, 3D diffractive optics still remains relatively unexplored. Here, we introduce the concept of azimuthal multiplexing. We propose, design, and demonstrate 3D diffractive optics showing this multiplexing effect. According to this new phenomenon, multiple pages of information are encoded and can be read out across independent channels by rotating one or more diffractive layers with respect to the others. We implement the concept with multilayer diffractive optical elements. An iterative projection optimization algorithm helps solve the inverse design problem. The experimental realization using photolithographically fabricated multilevel phase layers demonstrates the predicted performance. We discuss the limitations and potential of azimuthal multiplexing 3D diffractive optics.

     
    more » « less
  2. Abstract

    Meta‐optics have rapidly become a major research field within the optics and photonics community, strongly driven by the seemingly limitless opportunities made possible by controlling optical wavefronts through interaction with arrays of sub‐wavelength scatterers. As more and more modalities are explored, the design strategies to achieve desired functionalities become increasingly demanding, necessitating more advanced design techniques. Herein, the inverse design approach is utilized to create a set of single‐layer meta‐optics that simultaneously focus light and shape the spectra of focused light without using any filters. Thus, both spatial and spectral properties of the meta‐optics are optimized, resulting in spectra that mimic the color matching functions of the CIE 1931 XYZ color space, which links the spectral distribution of a light source to the color perception of a human eye. Experimental demonstrations of these meta‐optics show qualitative agreement with the theoretical predictions and help elucidate the focusing mechanism of these devices.

     
    more » « less
  3. Abstract

    The unique correspondence between mathematical operators and photonic elements in wave optics enables quantitative analysis of light manipulation with individual optical devices. Phase‐transition materials are able to provide real‐time reconfigurability of these devices, which would create new optical functionalities via (re)compilation of photonic operators, as those achieved in other fields such as field‐programmable gate arrays (FPGA). Here, by exploiting the hysteretic phase transition of vanadium dioxide, an all‐solid, rewritable metacanvas on which nearly arbitrary photonic devices can be rapidly and repeatedly written and erased is presented. The writing is performed with a low‐power laser and the entire process stays below 90 °C. Using the metacanvas, dynamic manipulation of optical waves is demonstrated for light propagation, polarization, and reconstruction. The metacanvas supports physical (re)compilation of photonic operators akin to that of FPGA, opening up possibilities where photonic elements can be field programmed to deliver complex, system‐level functionalities.

     
    more » « less
  4. Metasurfaces have been rapidly advancing our command over the many degrees of freedom of light within compact, lightweight devices. However, so far, they have mostly been limited to manipulating light in free space. Grating couplers provide the opportunity of bridging far-field optical radiation and in-plane guided waves, and thus have become fundamental building blocks in photonic integrated circuits. However, their operation and degree of light control is much more limited than metasurfaces. Metasurfaces integrated on top of guided wave photonic systems have been explored to control the scattering of light off-chip with enhanced functionalities – namely, point-by-point manipulation of amplitude, phase or polarization. However, these efforts have so far been limited to controlling one or two optical degrees of freedom at best, and to device configurations much more complex compared to conventional grating couplers. Here, we introduce leaky-wave metasurfaces, which are based on symmetry-broken photonic crystal slabs that support quasi-bound states in the continuum. This platform has a compact form factor equivalent to the one of conventional grating couplers, but it provides full command over amplitude, phase and polarization (four optical degrees of freedom) across large apertures. We present experimental demonstrations of various functionalities for operation at λ= 1.55 μm based on leaky-wave metasurfaces, including devices for phase and amplitude control at a fixed polarization state, and devices controlling all four optical degrees of freedom. Our results merge the fields of guided and free-space optics under the umbrella of metasurfaces, exploiting the hybrid nature of quasi-bound states in the continuum, for opportunities to advance in disruptive ways imaging, communications, augmented reality, quantum optics, LIDAR, and integrated photonic systems. 
    more » « less
  5. We propose a rigorous approach for the inverse design of functional photonic structures by coupling the adjoint optimization method and the 2D generalized Mie theory (2D-GMT) for the multiple scattering problem of finite-sized arrays of dielectric nanocylinders optimized to display desired functions. We refer to these functional scattering structures as “photonic patches.” We briefly introduce the formalism of 2D-GMT and the critical steps necessary to implement the adjoint optimization algorithm to photonic patches with designed radiation properties. In particular, we showcase several examples of periodic and aperiodic photonic patches with optimal nanocylinder radii and arrangements for radiation shaping, wavefront focusing in the Fresnel zone, and for the enhancement of the local density of states (LDOS) at multiple wavelengths over micron-sized areas. Moreover, we systematically compare the performances of periodic and aperiodic patches with different sizes and find that optimized aperiodic Vogel spiral geometries feature significant advantages in achromatic focusing compared to their periodic counterparts. Our results show that adjoint optimization coupled to 2D-GMT is a robust methodology for the inverse design of compact photonic devices that operate in the multiple scattering regime with optimal desired functionalities. Without the need for spatial meshing, our approach provides efficient solutions at a strongly reduced computational burden compared to standard numerical optimization techniques and suggests compact device geometries for on-chip photonics and metamaterials technologies.

     
    more » « less