skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: PMU-based Distributed Non-iterative Algorithm for Real-time Voltage Stability Monitoring
The Phasor measurement unit (PMU) measurements are mandatory to monitor the power system’s voltage stability margin in an online manner. Monitoring is key to the secure operation of the grid. Traditionally, online monitoring of voltage stability using synchrophasors required a centralized communication architecture, which leads to the high investment cost and cyber-security concerns. The increasing importance of cyber-security and low investment costs have recently led to the development of distributed algorithms for online monitoring of the grid that are inherently less prone to malicious attacks. In this work, we proposed a novel distributed non-iterative voltage stability index (VSI) by recasting the power flow equations as circles. The processors embedded at each bus in the smart grid with the help of PMUs and communication of voltage phasors between neighboring buses perform simultaneous online computations of VSI. The distributed nature of the index enables the real-time identification of the critical bus of the system with minimal communication infrastructure. The effectiveness of the proposed distributed index is demonstrated on IEEE test systems and contrasted with existing methods to show the benefits of the proposed method in speed, interpretability, identification of outage location, and low sensitivity to noisy measurements.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Smart Grid
Page Range / eLocation ID:
1 to 1
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Communication networks in power systems are a major part of the smart grid paradigm. It enables and facilitates the automation of power grid operation as well as self-healing in contingencies. Such dependencies on communication networks, though, create a roam for cyber-threats. An adversary can launch an attack on the communication network, which in turn reflects on power grid operation. Attacks could be in the form of false data injection into system measurements, flooding the communication channels with unnecessary data, or intercepting messages. Using machine learning-based processing on data gathered from communication networks and the power grid is a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security for cross-layer strategy is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection as well as identification of anomalies in the operation of the power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed in Mininet to simulate a communication network and obtain data for analysis. A distributed three controller software-defined networking (SDN) framework is proposed that utilizes the Open Network Operating System (ONOS) cluster. According to the findings of our suggested architecture, it outperforms a single SDN controller framework by a factor of more than ten times the throughput. This provides for a higher flow of data throughout the network while decreasing congestion caused by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms state-of-the-art physics and machine learning-based techniques in terms of attack classification. The performance of the framework is investigated under various types of communication attacks. 
    more » « less
  2. With the proliferation of distributed energy resources (DERs) in the distribution grid, it is a challenge to effectively control a large number of DERs resilient to the communication and security disruptions, as well as to provide the online grid services, such as voltage regulation and virtual power plant (VPP) dispatch. To this end, a hybrid feedback-based optimization algorithm along with deep learning forecasting technique is proposed to specifically address the cyber-related issues. The online decentralized feedback-based DER optimization control requires timely, accurate voltage measurement from the grid. However, in practice such information may not be received by the control center or even be corrupted. Therefore, the long short-term memory (LSTM) deep learning algorithm is employed to forecast delayed/missed/attacked messages with high accuracy. The IEEE 37-node feeder with high penetration of PV systems is used to validate the efficiency of the proposed hybrid algorithm. The results show that 1) the LSTM-forecasted lost voltage can effectively improve the performance of the DER control algorithm in the practical cyber-physical architecture; and 2) the LSTM forecasting strategy outperforms other strategies of using previous message and skipping dual parameter update. 
    more » « less
  3. null (Ed.)
    The interconnection of distributed energy resources (DERs) in microgrids (MGs) operating in both islanded and grid-connected modes require coordinated control strategies. DERs are interfaced with voltage source inverters (VSIs) enabling interconnection. This paper proposes a load demand sharing scheme for the parallel operation of VSIs in an islanded voltage source inverter-based microgrid (VSI-MG). The ride-through capability of a heavily loaded VSI-MG, where some of the VSIs are fully loaded due to the occurrence of an event is investigated. In developing analytical equations to model the VSI, the concept of virtual synchronous machines (VSM) is applied to enable the VSI mimic the inertia effect of synchronous machines. A power frame transformation (PFT) that takes the line ratios of the MG network into account is also incorporated to yield satisfactory transient responses of both network frequency and bus voltages in the MG network. A Jacobian-based method is then developed to take into account the operational capacity of each VSI in the VSI-MG. The resulting amendable droop control constrains the VSIs within their power capabilities when an event occurs. Simulation results presented within demonstrate the effectiveness of the proposed procedure which has great potential to facilitate efforts in maintaining system reliability and resiliency. 
    more » « less
  4. null (Ed.)
    Power system state estimation is an important component of the status and healthiness of the underlying electric power grid real-time monitoring. However, such a component is prone to cyber-physical attacks. The majority of research in cyber-physical power systems security focuses on detecting measurements False-Data Injection attacks. While this is important, measurement model parameters are also a most important part of the state estimation process. Measurement model parameters though, also known as static-data, are not monitored in real-life applications. Measurement model solutions ultimately provide estimated states. A state-of-the-art model presents a two-step process towards simultaneous false-data injection security: detection and correction. Detection steps are χ2 statistical hypothesis test based, while correction steps consider the augmented state vector approach. In addition, the correction step uses an iterative solution of a relaxed non-linear model with no guarantee of optimal solution. This paper presents a linear programming method to detect and correct cyber-attacks in the measurement model parameters. The presented bi-level model integrates the detection and correction steps. Temporal and spatio characteristics of the power grid are used to provide an online detection and correction tool for attacks pertaining the parameters of the measurement model. The presented model is implemented on the IEEE 118 bus system. Comparative test results with the state-of-the-art model highlight improved accuracy. An easy-to-implement model, built on the classical weighted least squares solution, without hard-to-derive parameters, highlights potential aspects towards real-life applications. 
    more » « less
  5. With the increasing penetration of cyber systems in the power grid, it is becoming increasingly imperative to deploy adequate security measures all across the grid to secure it against any kind of cyber threat. Since financial resources for investment in security are limited, optimal allocation of these cybersecurity resources in the grid is extremely important. At the same time, optimization of these investments proves to be challenging due to the uncertain behavior of attackers and the dynamically changing threat landscape. Existing solutions for this problem either do not address the dynamic behavior of adversaries or lack in the practical feasibility of the defense models. This paper addresses the problem of optimizing investment strategies in the cybersecurity infrastructure of a smart grid using a game-theoretic approach. The attacker is modeled using various attacker profiles which represent the possible types of adversaries in the context of CPS. Each profile has certain characteristics to bring out the aspect of uncertain behavior of the adversaries. The defender is modeled with various pragmatic characteristics that can be easily translated to the real-world grid scenarios for implementation. These characteristics include the standards laid down by the North American Electric Reliability Corporation (NERC) for Critical Infrastructure Protection (CIP) commonly known as the NERC-CIP standards. The game-theoretic framework allows us to obtain optimal strategies that the defender of the grid can adopt to minimize its losses against the possible attack threats on the grid. The concept is illustrated by a simplistic 3-bus power system model case study which depicts how the solution can be translated to practical implementation in the actual grid. 
    more » « less