This paper presents a resilient control framework for distributed frequency and voltage control of AC microgrids under data manipulation attacks. In order for each distributed energy resource (DER) to detect any misbehavior on its neighboring DERs, an attack detection mechanism is first presented using a Kullback-Liebler (KL) divergence-based criterion. An attack mitigation technique is then proposed that utilizes the calculated KL divergence factors to determine trust values indicating the trustworthiness of the received information. Moreover, DERs continuously generate a self-belief factor and communicate it with their neighbors to inform them of the validity level of their own outgoing information. DERs incorporate their neighbors' self-belief and their own trust values in their control protocols to slow down and mitigate attacks. It is shown that the proposed cyber-secure control effectively distinguishes data manipulation attacks from legitimate events. The performance of proposed secure frequency and voltage control techniques is verified through the simulation of microgrid tests system implemented on IEEE 34-bus test feeder with six DERs.
more »
« less
A Hybrid Optimization and Deep Learning Algorithm for Cyber-resilient DER Control
With the proliferation of distributed energy resources (DERs) in the distribution grid, it is a challenge to effectively control a large number of DERs resilient to the communication and security disruptions, as well as to provide the online grid services, such as voltage regulation and virtual power plant (VPP) dispatch. To this end, a hybrid feedback-based optimization algorithm along with deep learning forecasting technique is proposed to specifically address the cyber-related issues. The online decentralized feedback-based DER optimization control requires timely, accurate voltage measurement from the grid. However, in practice such information may not be received by the control center or even be corrupted. Therefore, the long short-term memory (LSTM) deep learning algorithm is employed to forecast delayed/missed/attacked messages with high accuracy. The IEEE 37-node feeder with high penetration of PV systems is used to validate the efficiency of the proposed hybrid algorithm. The results show that 1) the LSTM-forecasted lost voltage can effectively improve the performance of the DER control algorithm in the practical cyber-physical architecture; and 2) the LSTM forecasting strategy outperforms other strategies of using previous message and skipping dual parameter update.
more »
« less
- Award ID(s):
- 1852102
- PAR ID:
- 10414019
- Date Published:
- Journal Name:
- 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Enhancing grid resilience is proposed through the integration of distributed energy resources (DERs) with microgrids. Due to the diverse nature of DERs, there is a need to explore the optimal combined operation of these energy sources within the framework of microgrids. As such, this paper presents the design, implementation and validation of a Model Predictive Control (MPC)-based secondary control scheme to tackle two challenges: optimal islanded operation, and optimal re-synchronization of a microgrid. The MPC optimization algorithm dynamically adjusts input signals, termed manipulated variables, for each DER within the microgrid, including a gas turbine, an aggregate photovoltaic (PV) unit, and an electrical battery energy storage (BESS) unit. To attain optimal islanded operation, the secondary-level controller based on Model Predictive Control (MPC) was configured to uphold microgrid functionality promptly following the islanding event. Subsequently, it assumed the task of power balancing within the microgrid and ensuring the reliability of the overall system. For optimal re-synchronization, the MPC-based controller was set to adjust the manipulated variables to synchronize voltage and angle with the point of common coupling of the system. All stages within the microgrid operation were optimally achieved through one MPC-driven control system, where the controller can effectively guide the system to different goals by updating the MPC’s target reference. More importantly, the results show that the MPC-based control scheme is capable of controlling different DERs simultaneously, mitigating potentially harmful transient rotor torques from the re-synchronization as well as maintaining the microgrid within system performance requirements.more » « less
-
The widespread use of distributed energy sources (DERs) raises significant challenges for power system design, planning, and operation, leading to wide adaptation of tools on hosting capacity analysis (HCA). Traditional HCA methods conduct extensive power flow analysis. Due to the computation burden, these time-consuming methods fail to provide online hosting capacity (HC) in large distribution systems. To solve the problem, we first propose a deep learning-based problem formulation for HCA, which conducts offline training and determines HC in real time. The used learning model, long short-term memory (LSTM), implements historical time-series data to capture periodical patterns in distribution systems. However, directly applying LSTMs suffers from low accuracy due to the lack of consideration on spatial information, where location information like feeder topology is critical in nodal HCA. Therefore, we modify the forget gate function to dual forget gates, to capture the spatial correlation within the grid. Such a design turns the LSTM into the Spatial-Temporal LSTM (ST-LSTM). Moreover, as voltage violations are the most vital constraints in HCA, we design a voltage sensitivity gate to increase accuracy further. The results of LSTMs and ST-LSTMs on feeders, such as IEEE 34-, 123-bus feeders, and utility feeders, validate our designs.more » « less
-
Hybrid electric vehicles can achieve better fuel economy than conventional vehicles by utilizing multiple power sources. While these power sources have been controlled by rule-based or optimization-based control algorithms, recent studies have shown that machine learning-based control algorithms such as online Deep Reinforcement Learning (DRL) can effectively control the power sources as well. However, the optimization and training processes for the online DRL-based powertrain control strategy can be very time and resource intensive. In this paper, a new offline–online hybrid DRL strategy is presented where offline vehicle data are exploited to build an initial model and an online learning algorithm explores a new control policy to further improve the fuel economy. In this manner, it is expected that the agent can learn an environment consisting of the vehicle dynamics in a given driving condition more quickly compared to the online algorithms, which learn the optimal control policy by interacting with the vehicle model from zero initial knowledge. By incorporating a priori offline knowledge, the simulation results show that the proposed approach not only accelerates the learning process and makes the learning process more stable, but also leads to a better fuel economy compared to online only learning algorithms.more » « less
-
Voltage control in modern electric power distribution systems has become challenging due to the increasing penetration of distributed energy resources (DER). The current state-of-the-art voltage control is based on static/pre-determined DER volt-var curves. Static volt-var curves do not provide sufficient flexibility to address the temporal and spatial aspects of the voltage control problem in a power system with a large number of DER. This paper presents a simple, scalable, and robust distributed optimization framework (DOF) for optimizing voltage control. The proposed framework allows for data-driven distributed voltage optimization in a power distribution system. This method enhances voltage control by optimizing volt-var curve parameters of inverters in a distributed manner based on a cellular computational network (CCN) representation of the power distribution system. The cellular optimization approach enables the system-wide optimization. The cells to be optimized may be prioritized and two methods namely, graph and impact-based methods, are studied. The impact-based method requires extra initial computational efforts but thereafter provides better computational throughput than the graph-based method. The DOF is illustrated on a modified standard distribution test case with several DERs. The results from the test case demonstrate that the DOF based volt-var optimization results in consistently better performance than the state-of-the-art volt-var control.more » « less