skip to main content

Title: Impact of International Service Learning on Macro-Ethics:
To address complex problems in a globalized workplace, future engineers must understand the ethical implications of their work in the global context. International service learning is a possible approach for future engineers to gain an understanding of ethical implications in a global context. The purpose of this study is to investigate the potential benefits that international service learning may add to engineering ethics education. The quantitative study measured senior engineering students’ understanding of ethics from a national sample of students enrolled in capstone design courses (n=2095) in three types of international service learning experiences: capstone, volunteer/work, or co-curricular. Students who participated in international service learning through capstone and volunteer/work experience scored significantly (p<0.01, p<0.001 respectively) higher to questions that measured their understanding of ethics. Males compared to female engineering students showed the largest difference in their understanding of ethics. The integration of international service learning into engineering education should be more seriously considered to aid in more effectively teaching ethics. Male engineering students, who make up nearly 80% of engineering programs, can benefit the most in their ethics education from international service learning.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
International Journal for Service Learning in Engineering, Humanitarian Engineering and Social Entrepreneurship
Page Range or eLocation-ID:
1 to 15
Sponsoring Org:
National Science Foundation
More Like this
  1. Amidst growing concerns about a lack of attention to ethics in engineering education and professional practice, a variety of formal course-based interventions and informal or extracurricular programs have been created to improve the social and ethical commitments of engineering graduates. To supplement the formal and informal ethics education received as undergraduate students, engineering professionals often also participate in workplace training and professional development activities on ethics, compliance, and related topics. Despite this preparation, there is growing evidence to suggest that technical professionals are often challenged to navigate ethical situations and dilemmas. Some prior research has focused on assessing the impacts of a variety of learning experiences on students’ understandings of ethics and social responsibility, including the PIs’ prior NSF-funded CCE STEM study which followed engineering students through the four years of their undergraduate studies using both quantitative and qualitative research methods. This prior project explored how the students’ views on these topics changed across demographic groups, over time, between institutions, and due to specific interventions. Yet, there has been little longitudinal research on how these views and perceptions change (or do not change) among engineers during the school-to-work transition. Furthermore, there has been little exploration of how these views aremore »influenced by the professional contexts in which these engineers work, including cultures and norms prevalent in different technical fields, organizations, and industry sectors. This NSF-supported Ethical and Responsible Research (ER2) study responds to these gaps in the literature by asking: RQ1) How do perceptions of ethics and social responsibility change in the transition from undergraduate engineering degree programs to the workplace (or graduate studies), and how are these perceptions shaped or influenced?, and RQ2) How do perceptions of ethics and social responsibility vary depending on a given individual’s engineering discipline/background and current professional setting? This paper gives an overview of the research project, describing in particular the longitudinal, mixed-methods study design which will involve collecting and analyzing data from a large sample of early career engineers. More specifically, we will present the proposed study contexts, timeline, target subject populations, and procedures for quantitative and qualitative data collection and analysis. We will also describe how this study leverages our prior project, thereby allowing unique longitudinal comparisons that span participants’ years as an engineering undergraduate student to their time as an early-career professional. Through this project, we aim to better understand how early career engineers’ perceptions of social and ethical responsibility are shaped by their prior experiences and current professional contexts. This paper will likely be of particular interest to scholars who teach or research engineering ethics, social responsibility, and professional practice.« less
  2. This paper presents the initial work of a recently funded NSF project on ethical and responsible research and practices in science and engineering. The objective of this research is to improve instructor training, interventions, and student outcomes in high schools and universities to improve awareness and commitment to ethical practices in STEM coursework. The project will generate a robust snapshot of the ethical knowledge, reasoning skills, attitudes, and practices of several thousand undergraduate engineering students. This snapshot will inform the development of a three-week enrichment opportunity for high school STEM teachers. Working with university faculty and graduate students, these teachers will develop learning modules on ethical issues related to their courses. The snapshot will also identify gaps and guide the creation of targeted interventions that will be used in second-, third-, and fourth-year engineering courses. This data-driven project uses a mixed-methods approach to generate a better understanding of the impact of ethics interventions at various points in a student's academic development by developing and using a set of instruments to measure cognitive, affective, and behavioral aspects of ethical competency and self-efficacy. To that end, a second snapshot will be taken by testing and surveying engineering students in their capstone coursesmore »to provide a broad overview of the competence and self-confidence that engineering students have in dealing with ethical STEM issues, to determine the efficacy of various interventions, and to improve future interventions. Utilizing repeated measures and possessing a longitudinal dimension, the project will generate extensive data about the development of ethical competency, ethical self-efficacy, and their relationship. The interventions designed for secondary and tertiary classrooms will build on best practices for micro-insertion of ethics content that are practical and help students understand how technical competencies fit within broader social, economic, and environmental contexts. The capstone snapshot will also provide some measure of the impact of other experiences (e.g., undergraduate research, internships, service learning) and courses (e.g., humanities, social science, and business courses) on development of ethical practices. This report marks the start of a five-year project; therefore, the results presented in this paper represent findings from the engineering ethics literature and baseline results from survey of engineering freshmen at Texas A&M University. The findings from the survey are being utilized in developing intervention modules that will be integrated in upper-level engineering courses and training materials for high school teachers.« less
  3. Research in engineering ethics has examined the effects of education on the ethical knowledge and reasoning of students from mostly WEIRD (Western educated industrialized rich democratic) cultures. However, it is unclear that findings from WEIRD samples are transferable across cultures. China now graduates and employs more STEM (science technology engineering mathematics) majors than any other country, although little work has examined the ethical perspectives and education of these students. Therefore, a study was conducted exploring the kinds of ethical issues Chinese engineering students expect to encounter (expectations), the importance they attach to being ethical (motivations), and their relations to various curricular and extra-curricular factors, including sources of ethical influence, nature and extent of ethics education, and perceived usefulness of ethics education. 163 Chinese engineering majors from two Chinese-foreign educational institutes in Shanghai, China completed a survey. Results indicate participants were most likely to expect to face ethical issues related to fairness, and that the perceived usefulness of ethics education was predictive of both ethical expectations and motivations, followed by encountering instructors who cared about ethics. The extent of ethics education was related to ethical expectations but not motivations. The implications of these findings and directions for future work are discussed.
  4. Ethics and social responsibility have frequently been identified as important areas of practice for professional engineers. Thus, measuring engineering ethics and social responsibility is critical to assessing the abilities of engineering students, understanding how those abilities change over time, and exploring the impacts of certain ethical interventions, such as coursework or participation in extracurricular activities. However, measurement of these constructs is difficult, as they are complex and multi-faceted. Much prior research has been carried out to develop and assess ethical interventions in engineering education, but the findings have been mixed, in part because of these measurement challenges. To address this variation in prior work, we have designed and carried out a five year, longitudinal, mixed-methods study to explore students’ perceptions of ethics and social responsibility. This study relies on both repeated use of quantitative measures related to ethics and repeated qualitative interviews to explore how students’ perceptions of these issues change across time, between institutions, and in response to participation in certain experiences. This paper focuses on the thematic analysis and preliminary results of the 33 pairs of interviews that were gathered from participants at three different universities in Year 1 and Year 4 of their undergraduate studies. Given themore »multifaceted and complex nature of ethics, measuring and assessing how students’ perceive its various aspects (e.g. those related to ethical climate, moral awareness, moral disengagement etc.) has proven challenging. Furthermore, investigating how students’ perceptions of these concepts vary over time adds another layer of complexity for analyzing our longitudinal data. For example, a student might show increased understanding in one aspect of ethics over time and consistency in another, making it difficult to identify patterns or the impacts of specific influences. Due to this large variation in student experiences and perspectives, we used single case analysis to analyze the longitudinal interviews of a single participant, Corvin. From this analysis, three themes emerged in the student's responses: a shift in his views of engineering ethics and social responsibility from idealism to pragmatism; an adjustment in how he thinks engineers should balance their responsibilities to the public and to their employers; and the characteristics he identifies for ethical engineers. This paper will be beneficial for engineering educators and researchers who are interested in measuring and developing ethical capabilities among engineering students.« less
  5. Growing complexity and magnitude of the challenges facing humanity require new ways of understanding and operationalizing solutions for more healthy, sustainable, secure, and joyful living. Developed almost contemporaneously but separately, the National Academy of Engineering's 14 Grand Challenges (GCs) and United Nation’s 17 Sustainable Development Goals (GCs) describe and call for solutions to these challenges. During the 2017 meetings for the UNESCO Kick-off for Engineering Report II in Beijing, the Global Grand Challenges Summit in Washington, DC, and the World Engineering Education Forum (WEEF) in Malaysia, we expanded our work to include international perspectives on ways that the GCs and SDGs could be more strongly connected. Within this context we ask, "How can educators integrate best practices to nurture and support development of globally competent students who will reach the goals as the Engineers of 2020?" and "How can connectivity and alignment of curricula to the GCs and SDGs foster students’ development?" Conclusions from the UNESCO’s meeting were that educators and stakeholders still have much to do with respect to sharing the 17 SDGs with engineering audiences around the world. This conclusion was reiterated at WEEF when an informal poll among participants from around the world revealed that knowledge ofmore »both the GCs and the SDGs was not as wide-spread as we had initially assumed. There were several engineering educators who were learning about both of these constructs for the very first time. This led to concerns posed by students participating in the Malaysia conference as part of the Student Platform for Engineering Education Development (World SPEED). The student teams from India, Colombia, Brazil, and Korea acknowledged potential disadvantages associated with learning in the environments created by educators unequipped with knowledge of topics covered by the GCs, and the SDGs. The students were further concerned that their faculty and mentors would not be able to create educational environments that allow for development of intentional learning and conscientious projects associated the GCs and SDGs. The report here will discuss ways that the GCs and SDGs are driving international conversations about engineering curricula, diversity and inclusion, and partnerships for the goals.« less