skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine Learning Enhanced Real-Time Intrusion Detection Using Timing Information
Past work has investigated intrusion detection mechanisms for real-time control devices. This work contributes a novel framework of separating security monitoring and detection from real-time control, where the former is performed on Cloud edge devices while the latter is run on embedded devices attached to the system that is controlled. We contribute a security monitoring system that validates worst-case timing bounds of the target controller and also validates its control outputs by comparing it against model-based predictions, which are derived from machine learning.  more » « less
Award ID(s):
1813004
PAR ID:
10189506
Author(s) / Creator(s):
Date Published:
Journal Name:
International Workshop on Trustworthy & Real-time Edge Computing for Cyber-Physical Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, an urban object detection system via unmanned aerial vehicles (UAVs) is developed to collect real-time traffic information, which can be further utilized in many applications such as traffic monitoring and urban traffic management. The system includes an object detection algorithm, deep learning model training, and deployment on a real UAV. For the object detection algorithm, the Mobilenet-SSD model is applied owing to its lightweight and efficiency, which make it suitable for real-time applications on an onboard microprocessor. For model training, federated learning (FL) is used to protect privacy and increase efficiency with parallel computing. Last, the FL-trained object detection model is deployed on a real UAV for real-time performance testing. The experimental results show that the object detection algorithm can reach a speed of 18 frames per second with good detection performance, which shows the real-time computation ability of a resource-limited edge device and also validates the effectiveness of the developed system. 
    more » « less
  2. In recent years, security monitoring of public places and critical infrastructure has heavily relied on the widespread use of cameras, raising concerns about personal privacy violations. To balance the need for effective security monitoring with the protection of personal privacy, we explore the potential of optical fiber sensors for this application. This article proposes FiberFlex, an intelligent and distributed fiber sensor system. Ultizing Field Programmable Gate Arrays (FPGA) high-level synthesis (HLS) acceleration, FiberFlex offers real-time pedestrian detection by co-designing the entire pipeline of optical signal acquisition, processing, and recognition networks based on the principles of optical fiber sensing. As a promising alternative to traditional camera-based monitoring systems, FiberFlex achieves pedestrian detection by analyzing the vibration patterns caused by pedestrian footsteps, enabling security monitoring while preserving individual privacy. FiberFlex comprises three modules:First, fiber-optic sensing system: A fiber-optic distributed acoustic sensing (DAS) system is built and used to measure the ground vibration waves generated by people walking.Second, algorithms: We first collect the training data by measuring the ground vibration waves, label the data, and use the data to train the neural network models to perform pedestrian recognition.Third, hardware accelerators: We use HLS tools to design hardware modules on FPGA for data collection and pre-processing and integrate them with the downstream neural network accelerators to perform in-line real-time pedestrian detection. The final detection results are sent back from FPGA to the host CPU. We implement our system FiberFlex with the in-house built DAS system and AMD/Xilinx Kintex7 FPGA KC705 board and verify the whole system using the real-world collected data. We conduct recognition tests on five test subjects of varying ages, heights, and weights in a fixed sensing area. Each subject experienced 20 real-time recognition tests using their daily walking habits, and the subjects were given adequate rest between tests. After 100 tests on five test subjects, the overall real-time recognition accuracy exceeded\(88.0\%\). The whole system uses 55 W of power, 33 W in the optical DAS system and 22 W in the FPGA. Relying on its end-to-end interdisciplinary design, FiberFlex seamlessly combines fiber-optic sensors with FPGA accelerators to enable low-power real-time security monitoring without compromising privacy, making it a valuable addition to the existing security monitoring network. According to FiberFlex, more valuable research can be conducted in the future, such as fall monitoring for the elderly, migration of identification networks between different application scenarios, and improvement of anti-interference performance in more complex environments. In future perception networks, where the “eyes” are not feasible, let’s use fiber optic touch instead. 
    more » « less
  3. null (Ed.)
    We propose HYDRA-C, a design-time evaluation framework for integrating monitoring mechanisms in multicore real-time systems (RTS). Our goal is to ensure that security (or other monitoring) mechanisms execute in a "continuous" manner - i.e., as often as possible, across cores. This is to ensure that any such mechanisms run with few interruptions, if any. HYDRA-C is intended to allow designers of RTS to integrate monitoring mechanisms without perturbing existing timing properties or execution orders. We demonstrate the framework using a proofof-concept implementation with intrusion detection mechanisms as security tasks. We develop and use both, (a) a custom intrusion detection system (IDS) as well as (b) Tripwire - an open source data integrity checking tool. We compare the performance of HYDRA-C with a state-of-the-art multicore RT security integration approach and find that our method does not impact the schedulability and, on average, can detect intrusions 19.05% faster without impacting the performance of RT tasks. 
    more » « less
  4. Smart mobile devices have become an integral part of people's life and users often input sensitive information on these devices. However, various side channel attacks against mobile devices pose a plethora of serious threats against user security and privacy. To mitigate these attacks, we present a novel secure Back-of-Device (BoD) input system, SecTap, for mobile devices. To use SecTap, a user tilts her mobile device to move a cursor on the keyboard and tap the back of the device to secretly input data. We design a tap detection method by processing the stream of accelerometer readings to identify the user's taps in real time. The orientation sensor of the mobile device is used to control the direction and the speed of cursor movement. We also propose an obfuscation technique to randomly and effectively accelerate the cursor movement. This technique not only preserves the input performance but also keeps the adversary from inferring the tapped keys. Extensive empirical experiments were conducted on different smart phones to demonstrate the usability and security on both Android and iOS platforms. 
    more » « less
  5. A key feature of smart home devices is monitoring the environment and recording data. These devices provide security via motion-detection video alerts, cost-savings via thermostat usage history, and peace of mind via functions like auto-locking doors or water leak detectors. At the same time, the sharing of this information in interpersonal relationships---though necessary---is currently accomplished on an all-or-nothing basis. This can easily lead to oversharing in a multi-user environment. Although prior work has studied people's perceptions of information sharing with vendors or ISPs, the sharing of household data among users who interact personally is less well understood. Interpersonal situations make data sharing much more context-based and, thus, more complicated. In this paper, we use themes from the theory of contextual integrity in an online survey (n=1,992) to study how people perceive data sharing with others in smart homes and inform future designs and research. Our results show that data recipients in a smart home can be reduced to three major groups, and data types matter more than device types. We also found that the types of access control desired by users can vary from scenario to scenario. Depending on whom they are sharing data with and about what data, participants expressed varying levels of comfort when presented with different types of access control (e.g., explicit approval versus time-limited access). Taken together, this provides strong evidence that a more dynamic access control system is needed, and we can design it in a more usable way. 
    more » « less