Compared with traditional half-duplex wireless systems, the application of emerging full-duplex (FD) technology can potentially double the system capacity theoretically. However, conventional techniques for suppressing self-interference (SI) adopted in FD systems require exceedingly high power consumption and expensive hardware. In this paper, we consider employing an intelligent reflecting surface (IRS) in the proximity of an FD base station (BS) to mitigate SI for simultaneously receiving data from uplink users and transmitting information to downlink users. The objective considered is to maximize the system weighted sum-rate by jointly optimizing the IRS phase shifts, the BS transmit beamformers, and the transmit power of the uplink users. To visualize the role of the IRS in SI cancellation, we first study a simple scenario with one downlink user and one uplink user. To address the formulated non-convex problem, a low-complexity algorithm based on successive convex approximation is proposed. For the more general case considering multiple downlink and uplink users, an efficient alternating optimization algorithm based on element-wise optimization is proposed. Numerical results demonstrate that the FD system with the proposed schemes can achieve a larger gain over the half-duplex system, and the IRS is able to achieve a balance between suppressing SI and providing beamforming gain.
more »
« less
Full-Duplex Store-Carry-Forward scheme for Intermittently Connected Vehicular Networks
We consider intermittently connected vehicular networks (ICVNs) in which base stations (BSs) are installed along the highway to connect moving vehicles with internet. Due to the deployment cost, it is hard to cover the entire highway with BSs. To minimize the outage time in the uncovered area (UA), several cooperative store-carry-forward (CSCF) schemes have been proposed in which a vehicle is selected to act as a relay by buffering data to be relayed to a target vehicle in the UA. In this paper, we propose an energy-efficient full-duplex (FD) CSCF scheme that exploits the relay ability to receive and transmit simultaneously to improve the effective communication time, Te, between the relay and the target vehicle. Accordingly, it can minimize the outage time and deliver more data to the the target vehicle. In addition, the power allocation that minimizes the transmission cost (TC) under the required rates constraints is found. The problem is formulated as a geometric program (GP) and globally solved using the interior-point method. As compared to the half-duplex CSCF scheme, simulation results show that the proposed FD scheme offers more effective time, more successfully delivered data in the UA and lower TC.
more »
« less
- Award ID(s):
- 1816112
- PAR ID:
- 10189580
- Date Published:
- Journal Name:
- 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider detection of spoofing relay attack in time-division duplex (TDD) multiple antenna systems where an adversary operating in a full-duplex mode, amplifies and forwards the training signal of the legitimate receiver. In TDD systems, the channel state information (CSI) can be acquired using reverse training. The spoofing relay attack contaminates the channel estimation phase. Consequently the beamformer designed using the contaminated channel estimate can lead to a significant information leakage to the attacking adversary. A recent approach proposed using the minimum description length (MDL) criterion to detect spoofing relay attack. In this paper we augment this approach with joint channel estimation and secure beamforming to mitigate the effects of pilot contamination by spoofing relay. The proposed mitigation approach is illustrated via simulations.more » « less
-
| The relentless demand for data in our society has driven the continuous evolution of wireless technologies to enhance network capacity. While current deployments of 5G have made strides in this direction using massive multiple-input–multiple-output (MIMO) and millimeter-wave (mmWave) bands, all existing wireless systems operate in a half-duplex (HD) mode. Full-duplex (FD) wireless communication, on the other hand, enables simultaneous transmission and reception (STAR) of signals at the same frequency, offering advantages such as enhanced spectrum efficiency, improved data rates, and reduced latency. This article presents a comprehensive review of FD wireless systems, with a focus on hardware design, implementation, cross-layered considerations, and applications. The major bottleneck in achieving FD communication is the presence of self-interference (SI) signals from the transmitter (TX) to the receiver, and achieving SI cancellation (SIC) with real-time adaption is critical for FD deployment. The review starts by establishing a system-level understanding of FD wireless systems, followed by a review of the architectures of antenna interfaces and integrated RF and baseband (BB) SI cancellers, which show promise in enabling low-cost, small-form-factor, portable FD systems. We then discuss digital cancellation techniques, including digital signal processing (DSP)- and learning-based algorithms. The challenges presented by FD phased-array and MIMO systems are discussed, followed by system-level aspects, including optimization algorithms, opportunities in the higher layers of the networking protocol stack, and testbed integration. Finally, the relevance of FD systems in applications such as next-generation (xGmore » « less
-
Self-driving vehicles will need low-latency and high-capacity vehicular communication for acquiring wider view of their surroundings. Such vehicle-to-vehicle communication can be indirectly supported in some circumstances (e.g., if blocked) through adjacent road side units (RSUs). RSUs will be acting as full-duplex repeaters among the vehicles to ensure low latency and high data rate. However, full-duplex repeaters result in self-interference phenomenon which can degrade the reliability of the communication links. In this work, we aim to enhance the reliability of full-duplex repeaters by canceling out the self-interference impact, and applying a beamforming scheme that is matched to the source-destination composite channel. We show that the proposed self-interference cancellation and beamforming (SICAB) algorithm significantly reduces the error rate for low-isolated repeaters. Finally, we illustrate the impact of the repeater isolation capability on the performance of the proposed SICAB algorithm.more » « less
-
The Intelligent Transportation System has become one of the most globally researched topics, with Connected and Autonomous Vehicles(CAV) at its core. The CAV applications can be improved by the study of vehicle platooning immune to realtime traffic and vehicular network losses. In this work, we explore the need to integrate the Network model and Platooning system model for highway environments. The proposed platoon model is designed to be adaptive in length, providing the node vehicles to merge and exit. This overcomes the assumption that all the platoon nodes should have a common source and destination. The challenges of the existing platoon model, such as relay selection, acceleration threshold, are addressed for highly modular platoon design. The presented algorithm for merge and exit events optimizes the trade-off between network parameters such as communication range and vehicle dynamic parameters such as velocity and acceleration threshold. It considers the network bounds like SINR and link stability and vehicle trajectory parameters like the duration of the vehicle in the platoon. This optimizes the traffic throughput while maintaining stability using the PID controller. The work tries to increase the vehicle inclusion time in the platoon while preserving the overall traffic throughput.more » « less