skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Experimental Study on Human Milk Rheology: Behavior Changes from External Factors
The influence of external factors, including temperature, storage, aging, time, and shear rate, on the general rheological behavior of raw human milk is investigated. Rotational and oscillatory experiments were performed. Human milk showed non-Newtonian, shear-thinning, thixotropic behavior with both yield and flow stresses. Storage and aging increased milk density and decreased viscosity. In general, increases in temperature lowered density and viscosity with periods of inconsistent behavior noted between 6–16 ∘ C and over 40 ∘ C. Non-homogeneous breakdown between the yield and flow stresses was found which, when coupled with thixotropy, helps identify the source of nutrient losses during tube feeding.  more » « less
Award ID(s):
1454334 1707063
PAR ID:
10189732
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Fluids
Volume:
5
Issue:
2
ISSN:
2311-5521
Page Range / eLocation ID:
42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We explore the rheology during a startup flow of well-characterized polyelectrolyte microgel suspensions, which form soft glasses above the jamming concentration. We present and discuss results measured using different mechanical histories focusing on the variations of the static yield stress and yield strain. The behavior of the shear stress growth function is affected by long-lived residual stresses and strains that imprint a slowly decaying mechanical memory inside the materials. The startup flow response is not reversible upon flow reversal and the amplitude of the static yield stress increases with the time elapsed after rejuvenation. We propose an experimental protocol that minimizes the directional memory and we analyze the effect of aging. The static yield strain γ p and the reduced static yield stress σ p / σ y , where σ y is the dynamic yield stress measured from steady flow measurements, are in good agreement with our previous simulations [Khabaz et al., “Transient dynamics of soft particle glasses in startup shear flow. Part I: Microstructure and time scales,” J. Rheol. 65, 241 (2021)]. Our results demonstrate the need to consider memory and aging effects in transient measurements on soft particle glasses. 
    more » « less
  2. Nearly, all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition and give a complete theory of the viscosity in terms of a universal crossover scaling function from the frictionless jamming point to a rigidity transition associated with friction, anisotropy, and shear. Strikingly, we find experimentally that for two different systems—cornstarch in glycerol and silica spheres in glycerol—the viscosity can be collapsed onto a single universal curve over a wide range of stresses and volume fractions. The collapse reveals two separate scaling regimes due to a crossover between frictionless isotropic jamming and frictional shear jamming, with different critical exponents. The material-specific behavior due to the microscale particle interactions is incorporated into a scaling variable governing the proximity to shear jamming, that depends on both stress and volume fraction. This reformulation opens the door to importing the vast theoretical machinery developed to understand equilibrium critical phenomena to elucidate fundamental physical aspects of the shear thickening transition. 
    more » « less
  3. Debris flows are dense and fast-moving complex suspensions of soil and water that threaten lives and infrastructure. Assessing the hazard potential of debris flows requires predicting yield and flow behavior. Reported measurements of rheology for debris flow slurries are highly variable and sometimes contradictory due to heterogeneity in particle composition and volume fraction ( ϕ ) and also inconsistent measurement methods. Here we examine the composition and flow behavior of source materials that formed the postwildfire debris flows in Montecito, CA, in 2018, for a wide range of ϕ that encapsulates debris flow formation by overland flow. We find that shear viscosity and yield stress are controlled by the distance from jamming, Δ ϕ = ϕ m − ϕ , where the jamming fraction ϕ m is a material parameter that depends on grain size polydispersity and friction. By rescaling shear and viscous stresses to account for these effects, the data collapse onto a simple nondimensional flow curve indicative of a Bingham plastic (viscoplastic) fluid. Given the highly nonlinear dependence of rheology on Δ ϕ , our findings suggest that determining the jamming fraction for natural materials will significantly improve flow models for geophysical suspensions such as hyperconcentrated flows and debris flows. 
    more » « less
  4. The formation and evolution of a heterogeneous flow and flow reversal are examined in highly elastic, gel-like wormlike micelles (WLMs) formed from an amphiphilic triblock poloxamer P234 in 2M NaCl. A combination of linear viscoelastic, steady shear, and creep rheology demonstrate that these WLMs have a yield stress and exhibit viscoelastic aging, similar to some soft glassy materials. Nonlinear shear rheology and rheoparticle tracking velocimetry reveal that these poloxamer WLMs undergo a period of strong elastic recoil and flow reversal after the onset of shear startup. As flow reversal subsides, a fluidized high shear rate region and a nearly immobile low shear rate region of fluid form, accompanied by wall slip and elastic instabilities. The features of this flow heterogeneity are reminiscent of those for aging yield stress fluids, where the heterogeneous flow forms during the initial stress overshoot and is sensitive to the inherent stress gradient of the flow geometry. Additionally, macroscopic bands that form transiently above a critical shear rate become “trapped” due to viscoelastic aging in the nearly immobile region. This early onset of the heterogeneous flow during the rapidly decreasing portion of the stress overshoot differs from that typically observed in shear banding WLMs and is proposed to be necessary for observing significant flow reversal. Exploring the early-time, transient behavior of this WLM gel with rheology similar to both WLM solutions and soft glassy materials provides new insights into spatially heterogeneous flows in both of these complex fluids. 
    more » « less
  5. Material relationships at low temperatures were determined for concentrated surfactant solutions using a combination of rheological experiments, cross-polarized microscopy, calorimetry, and small angle X-ray scattering. A lamellar structured 70 wt% solution of sodium laureth sulfate in water was used as a model system. At cold temperatures (5 °C and 10 °C), the formation of surfactant crystals resulted in extremely high viscosity. The bulk flow behavior of multi-lamellar vesicles (20 °C) and focal conic defects (90 °C) in the lamellar phase was similar. Shear-induced crystallization at temperatures higher than the equilibrium crystallization temperature range resulted in an unusual complex viscosity peak. The effects of processing-relevant parameters including temperature, cooling time, and applied shear were investigated. Knowledge of key low-temperature structure–property-processing relationships for concentrated feedstocks is essential for the sustainable design and manufacturing of surfactant-based consumer products for applications such as cold-water laundry. 
    more » « less