skip to main content


Title: HLS-Based Acceleration Framework for Deep Convolutional Neural Networks
Deep Neural Networks (DNNs) have been successfully applied in many fields. Considering performance, flexibility, and energy efficiency, Field Programmable Gate Array (FPGA) based accelerator for DNNs is a promising solution. The existing frameworks however lack the possibility of reusability and friendliness to design a new network with minimum efforts. Modern high-level synthesis (HLS) tools greatly reduce the turnaround time of designing and implementing complex FPGA-based accelerators. This paper presents a framework for hardware accelerator for DNNs using high level specification. A novel architecture is introduced that maximizes data reuse and external memory bandwidth. This framework allows to generate a scalable HLS code for a given pre-trained model that can be mapped to different FPGA platforms. Various HLS compiler optimizations have been applied to the code to produce efficient implementation and high resource utilization. The framework achieves a peak performance of 23 frames per second for SqueezeNet on Xilinx Alveo u250 board.  more » « less
Award ID(s):
1725729
NSF-PAR ID:
10190052
Author(s) / Creator(s):
Date Published:
Journal Name:
Applied Reconfigurable Computing. Architectures, Tools, and Applications
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Adopting FPGA as an accelerator in datacenters is becoming mainstream for customized computing, but the fact that FPGAs are hard to program creates a steep learning curve for software programmers. Even with the help of high-level synthesis (HLS) , accelerator designers still have to manually perform code reconstruction and cumbersome parameter tuning to achieve optimal performance. While many learning models have been leveraged by existing work to automate the design of efficient accelerators, the unpredictability of modern HLS tools becomes a major obstacle for them to maintain high accuracy. To address this problem, we propose an automated DSE framework— AutoDSE —that leverages a bottleneck-guided coordinate optimizer to systematically find a better design point. AutoDSE detects the bottleneck of the design in each step and focuses on high-impact parameters to overcome it. The experimental results show that AutoDSE is able to identify the design point that achieves, on the geometric mean, 19.9× speedup over one CPU core for MachSuite and Rodinia benchmarks. Compared to the manually optimized HLS vision kernels in Xilinx Vitis libraries, AutoDSE can reduce their optimization pragmas by 26.38× while achieving similar performance. With less than one optimization pragma per design on average, we are making progress towards democratizing customizable computing by enabling software programmers to design efficient FPGA accelerators. 
    more » « less
  2. FPGAs offer a heterogenous compute solution to the continuous de- sire for increased performance by enabling the creation of application- specific hardware that accelerates computation. While the barrier to entry has historically been steep, advances in High Level Synthe- sis (HLS) are making FPGAs more accessible. Specifically, the Intel FPGA OpenCL SDK allows software designers to abstract away low level details of architecting hardware on an FPGA and allows them to author computational kernels in a higher level language. Furthermore, Intel has developed a system that incorporates both a multicore Xeon CPU and Arria 10 FPGA into the same chip package as part of the Heterogeneous Accelerator Research Program (HARP) that can be targeted by their SDK. In this work, we target the second iteration of the HARP platform (HARPv2) using HLS through porting of OpenCL kernels originally written for FPGAs connected via a PCIe bus. We evaluate the HARPv2 system’s performance against previously reported results, explore the portability of kernels through a hardware design space search, and empirically show the benefits of using the shared virtual memory (SVM) abstraction over explicit reads and writes. 
    more » « less
  3. Architecture reverse engineering has become an emerging attack against deep neural network (DNN) implemen- tations. Several prior works have utilized side-channel leakage to recover the model architecture while the an DNN is executing on a hardware acceleration platform. In this work, we target an open- source deep-learning accelerator, Versatile Tensor Accelerator (VTA), and utilize electromagnetic (EM) side-channel leakage to comprehensively learn the association between DNN architecture configurations and EM emanations. We also consider the holistic system – including the low-level tensor program code of the VTA accelerator on a Xilinx FPGA, and explore the effect of such low- level configurations on the EM leakage. Our study demonstrates that both the optimization and configuration of tensor programs will affect the EM side-channel leakage. Gaining knowledge of the association between low-level tensor program and the EM emanations, we propose NNReArch, a lightweight tensor program scheduling framework against side- channel-based DNN model architecture reverse engineering. Specifically, NNReArch targets reshaping the EM traces of different DNN operators, through scheduling the tensor program execution of the DNN model so as to confuse the adversary. NNReArch is a comprehensive protection framework supporting two modes, a balanced mode that strikes a balance between the DNN model confidentiality and execution performance, and a secure mode where the most secure setting is chosen. We imple- ment and evaluate the proposed framework on the open-source VTA with state-of-the-art DNN architectures. The experimental results demonstrate that NNReArch can efficiently enhance the model architecture security with a small performance overhead. In addition, the proposed obfuscation technique makes reverse engineering of the DNN architecture significantly harder. 
    more » « less
  4. Traditionally, FPGA programming has been done via a hardware description language (HDL). An HDL provides fine-grained control over reconfigurable hardware but with limited productivity due to a steep learning curve and tedious design cycle. Thus, high-level synthesis (HLS) approaches have been a significant boon to productivity, and in recent years, OpenCL has emerged as a vendor-agnostic HLS language that offers the added benefit of interoperation with other OpenCL platforms (e.g., CPU, GPU, DSP) and existing OpenCL software. However, OpenCL's productivity can also suffer from tedious boilerplate code and the need to manually coordinate the host (i.e., CPU) and device (i.e., FPGA or other device). So, we present MetaCL, a compiler-assisted interface that takes OpenCL kernel functions as input and automatically generates OpenCL host-side code as output. MetaCL produces more efficient and readable host-side code, ensures portability, and introduces minimal additional runtime overhead compared to unassisted OpenCL development. 
    more » « less
  5. Field-programmable gate arrays (FPGAs) provide an opportunity to co-design applications with hardware accelerators, yet they remain difficult to program. High-level synthesis (HLS) tools promise to raise the level of abstraction by compiling C or C++ to accelerator designs. Repurposing legacy software languages, however, requires complex heuristics to map imperative code onto hardware structures. We find that the black-box heuristics in HLS can be unpredictable: changing parameters in the program that should improve performance can counterintuitively yield slower and larger designs. This paper proposes a type system that restricts HLS to programs that can predictably compile to hardware accelerators. The key idea is to model consumable hardware resources with a time-sensitive affine type system that prevents simultaneous uses of the same hardware structure. We implement the type system in Dahlia, a language that compiles to HLS C++, and show that it can reduce the size of HLS parameter spaces while accepting Pareto-optimal designs. 
    more » « less