We present BurstZ, a bandwidth-efficient accelerator platform for scientific computing. While accelerators such as GPUs and FPGAs provide enormous computing capabilities, their effectiveness quickly deteriorates once the working set becomes larger than the on-board memory capacity, causing the performance to become bottlenecked either by the communication bandwidth between the host and the accelerator. Compression has not been very useful in solving this issue due to the difficulty of efficiently compressing floating point numbers, which scientific data often consists of. Most compression algorithms are either ineffective with floating point numbers, or has a high performance overhead.
BurstZ is an FPGA-based accelerator platform which addresses the bandwidth issue via a novel hardware-optimized floating point compression algorithm, which we call sZFP. We demonstrate that BurstZ can completely remove the communication bottleneck for accelerators, using a 3D stencil-code accelerator implemented on a prototype BurstZ implementation. Evaluated against hand-optimized implementations of stencil code accelerators of the same architecture, our BurstZ prototype outperformed an accelerator without compression by almost 4X, and even an accelerator with enough memory for the entire dataset by over 2X. BurstZ improved communication efficiency so much, our prototype was even able to outperform the upper limit projected performance of an optimized stencil core with ideal memory access characteristics, by over 2X.
more »
« less
Node-Aware Stencil Communication for Heterogeneous Supercomputers
High-performance distributed computing systems increasingly feature nodes that have multiple CPU sockets and multiple GPUs. The communication bandwidth between these components is non-uniform. Furthermore, these systems can expose different communication capabilities between these components. For communication-heavy applications, optimally using these capabilities is challenging and essential for performance. Bespoke codes with optimized communication may be non-portable across run-time/software/hardware configurations, and existing stencil frameworks neglect optimized communication. This work presents node-aware approaches for automatic data placement and communication implementation for 3D stencil codes on multi-GPU nodes with non-homogeneous communication performance and capabilities. Benchmarking results in the Summit system show that choices in placement can result in a 20% improvement in single-node exchange, and communication specialization can yield a further 6x improvement in exchange time in a single node, and a 16% improvement at 1536 GPUs.
more »
« less
- Award ID(s):
- 1725729
- NSF-PAR ID:
- 10190061
- Date Published:
- Journal Name:
- 2020 IEEE International Parallel and Distributed Processing Symposium Workshops
- Page Range / eLocation ID:
- 796 to 805
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues.more » « less
-
Alternating Least Square (ALS) is a classic algorithm to solve matrix factorization widely used in recommendation systems. Existing efforts focus on parallelizing ALS on multi-/many-core platforms to handle large datasets. Recently, an optimized ALS variant called eALS was proposed, and it yields significantly lower time complexity and higher recommending accuracy than ALS. However, it is challenging to parallelize eALS on modern parallel architectures (e.g., CPUs and GPUs) because: 1) eALS’ data dependence prevents it from fine-grained parallel execution, thus eALS cannot fully utilize GPU's massive parallelism, 2) the sparsity of input data causes poor data locality and unbalanced workload, and 3) its large memory usage cannot fit into GPU's limited on-device memory, particularly for real-world large datasets. This paper proposes an efficient CPU/GPU heterogeneous recommendation system based on fast eALS for the first time (called HEALS) that consists of a set of system optimizations. HEALS employs newly designed architecture-adaptive data formats to achieve load balance and good data locality on CPU and GPU. HEALS also presents a CPU/GPU collaboration model that can explore both task parallelism and data parallelism. HEALS also optimizes this collaboration model with data communication overlapping and dynamic workload partition between CPU and GPU. Moreover, HEALS is further enhanced by various parallel techniques (e.g., loop unrolling, vectorization, and GPU parallel reduction). Evaluation results show that HEALS outperforms other state-of-the-art baselines in both performance and recommendation quality. Particularly, HEALS achieves up to 5.75 x better performance than a state-of-the-art ALS GPU library. This work also demonstrates the possibility of conducting fast recommendations on large datasets with constrained (or relaxed) hardware resources, e.g, a single CPU/GPU node.more » « less
-
Abstract Background Bioinformatic workflows frequently make use of automated genome assembly and protein clustering tools. At the core of most of these tools, a significant portion of execution time is spent in determining optimal local alignment between two sequences. This task is performed with the Smith-Waterman algorithm, which is a dynamic programming based method. With the advent of modern sequencing technologies and increasing size of both genome and protein databases, a need for faster Smith-Waterman implementations has emerged. Multiple SIMD strategies for the Smith-Waterman algorithm are available for CPUs. However, with the move of HPC facilities towards accelerator based architectures, a need for an efficient GPU accelerated strategy has emerged. Existing GPU based strategies have either been optimized for a specific type of characters (Nucleotides or Amino Acids) or for only a handful of application use-cases. Results In this paper, we present ADEPT, a new sequence alignment strategy for GPU architectures that is domain independent, supporting alignment of sequences from both genomes and proteins. Our proposed strategy uses GPU specific optimizations that do not rely on the nature of sequence. We demonstrate the feasibility of this strategy by implementing the Smith-Waterman algorithm and comparing it to similar CPU strategies as well as the fastest known GPU methods for each domain. ADEPT’s driver enables it to scale across multiple GPUs and allows easy integration into software pipelines which utilize large scale computational systems. We have shown that the ADEPT based Smith-Waterman algorithm demonstrates a peak performance of 360 GCUPS and 497 GCUPs for protein based and DNA based datasets respectively on a single GPU node (8 GPUs) of the Cori Supercomputer. Overall ADEPT shows 10x faster performance in a node-to-node comparison against a corresponding SIMD CPU implementation. Conclusions ADEPT demonstrates a performance that is either comparable or better than existing GPU strategies. We demonstrated the efficacy of ADEPT in supporting existing bionformatics software pipelines by integrating ADEPT in MetaHipMer a high-performance denovo metagenome assembler and PASTIS a high-performance protein similarity graph construction pipeline. Our results show 10% and 30% boost of performance in MetaHipMer and PASTIS respectively.more » « less
-
Modern machine learning frameworks can train neural networks using multiple nodes in parallel, each computing parameter updates with stochastic gradient descent (SGD) and sharing them asynchronously through a central parameter server. Due to communication overhead and bottlenecks, the total throughput of SGD updates in a cluster scales sublinearly, saturating as the number of nodes increases. In this paper, we present a solution to predicting training throughput from profiling traces collected from a single-node configuration. Our approach is able to model the interaction of multiple nodes and the scheduling of concurrent transmissions between the parameter server and each node. By accounting for the dependencies between received parts and pending computations, we predict overlaps between computation and communication and generate synthetic execution traces for configurations with multiple nodes. We validate our approach on TensorFlow training jobs for popular image classification neural networks, on AWS and on our in-house cluster, using nodes equipped with GPUs or only with CPUs. We also investigate the effects of data transmission policies used in TensorFlow and the accuracy of our approach when combined with optimizations of the transmission schedule.more » « less