skip to main content


Title: BurstZ: a bandwidth-efficient scientific computing accelerator platform for large-scale data
We present BurstZ, a bandwidth-efficient accelerator platform for scientific computing. While accelerators such as GPUs and FPGAs provide enormous computing capabilities, their effectiveness quickly deteriorates once the working set becomes larger than the on-board memory capacity, causing the performance to become bottlenecked either by the communication bandwidth between the host and the accelerator. Compression has not been very useful in solving this issue due to the difficulty of efficiently compressing floating point numbers, which scientific data often consists of. Most compression algorithms are either ineffective with floating point numbers, or has a high performance overhead. BurstZ is an FPGA-based accelerator platform which addresses the bandwidth issue via a novel hardware-optimized floating point compression algorithm, which we call sZFP. We demonstrate that BurstZ can completely remove the communication bottleneck for accelerators, using a 3D stencil-code accelerator implemented on a prototype BurstZ implementation. Evaluated against hand-optimized implementations of stencil code accelerators of the same architecture, our BurstZ prototype outperformed an accelerator without compression by almost 4X, and even an accelerator with enough memory for the entire dataset by over 2X. BurstZ improved communication efficiency so much, our prototype was even able to outperform the upper limit projected performance of an optimized stencil core with ideal memory access characteristics, by over 2X.  more » « less
Award ID(s):
1908507
NSF-PAR ID:
10195756
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 34th ACM International Conference on Supercomputing
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dense matrix multiply (MM) serves as one of the most heavily used kernels in deep learning applications. To cope with the high computation demands of these applications, heterogeneous architectures featuring both FPGA and dedicated ASIC accelerators have emerged as promising platforms. For example, the AMD/Xilinx Versal ACAP architecture combines general-purpose CPU cores and programmable logic (PL) with AI Engine processors (AIE) optimized for AI/ML. An array of 400 AI Engine processors executing at 1 GHz can theoretically provide up to 6.4 TFLOPs performance for 32-bit floating-point (fp32) data. However, machine learning models often contain both large and small MM operations. While large MM operations can be parallelized efficiently across many cores, small MM operations typically cannot. In our investigation, we observe that executing some small MM layers from the BERT natural language processing model on a large, monolithic MM accelerator in Versal ACAP achieved less than 5% of the theoretical peak performance. Therefore, one key question arises: How can we design accelerators to fully use the abundant computation resources under limited communication bandwidth for end-to-end applications with multiple MM layers of diverse sizes? We identify the biggest system throughput bottleneck resulting from the mismatch of massive computation resources of one monolithic accelerator and the various MM layers of small sizes in the application. To resolve this problem, we propose the CHARM framework to compose multiple diverse MM accelerator architectures working concurrently towards different layers within one application. CHARM includes analytical models which guide design space exploration to determine accelerator partitions and layer scheduling. To facilitate the system designs, CHARM automatically generates code, enabling thorough onboard design verification. We deploy the CHARM framework for four different deep learning applications, including BERT, ViT, NCF, MLP, on the AMD/Xilinx Versal ACAP VCK190 evaluation board. Our experiments show that we achieve 1.46 TFLOPs, 1.61 TFLOPs, 1.74 TFLOPs, and 2.94 TFLOPs inference throughput for BERT, ViT, NCF, MLP, respectively, which obtain 5.40x, 32.51x, 1.00x and 1.00x throughput gains compared to one monolithic accelerator. 
    more » « less
  2. The continued growth in the processing power of FPGAs coupled with high bandwidth memories (HBM), makes systems like the Xilinx U280 credible platforms for linear solvers which often dominate the run time of scientific and engineering applications. In this paper, we present Callipepla, an accelerator for a preconditioned conjugate gradient linear solver (CG). FPGA acceleration of CG faces three challenges: (1) how to support an arbitrary problem and terminate acceleration processing on the fly, (2) how to coordinate long-vector data flow among processing modules, and (3) how to save off-chip memory bandwidth and maintain double (FP64) precision accuracy. To tackle the three challenges, we present (1) a stream-centric instruction set for efficient streaming processing and control, (2) vector streaming reuse (VSR) and decentralized vector flow scheduling to coordinate vector data flow among modules and further reduce off-chip memory access latency with a double memory channel design, and (3) a mixed precision scheme to save bandwidth yet still achieve effective double precision quality solutions. To the best of our knowledge, this is the first work to introduce the concept of VSR for data reusing between on-chip modules to reduce unnecessary off-chip accesses and enable modules working in parallel for FPGA accelerators. We prototype the accelerator on a Xilinx U280 HBM FPGA. Our evaluation shows that compared to the Xilinx HPC product, the XcgSolver, Callipepla achieves a speedup of 3.94×, 3.36× higher throughput, and 2.94× better energy efficiency. Compared to an NVIDIA A100 GPU which has 4× the memory bandwidth of Callipepla, we still achieve 77% of its throughput with 3.34× higher energy efficiency. The code is available at https://github.com/UCLA-VAST/Callipepla. 
    more » « less
  3. Arbitrary-precision integer multiplication is the core kernel of many applications including scientific computing, cryptographic algorithms, etc. Existing acceleration of arbitrary-precision integer multiplication includes CPUs, GPUs, FPGAs, and ASICs. To leverage the hardware intrinsics low-bit function units (32/64-bit), arbitrary-precision integer multiplication can be calculated using Karatsuba decomposition, and Schoolbook decomposition by decomposing the two large operands into several small operands, generating a set of low-bit multiplications that can be processed either in a spatial or sequential manner on the low-bit function units, e.g., CPU vector instructions, GPU CUDA cores, FPGA digital signal processing (DSP) blocks. Among these accelerators, reconfigurable computing, e.g., FPGA accelerators are promised to provide both good energy efficiency and flexibility. We implement the state-of-the-art (SOTA) FPGA accelerator and compare it with the SOTA libraries on CPUs and GPUs. Surprisingly, in terms of energy efficiency, we find that the FPGA has the lowest energy efficiency, i.e., 0.29x of the CPU and 0.17x of the GPU with the same generation fabrication. Therefore, key questions arise: Where do the energy efficiency gains of CPUs and GPUs come from? Can reconfigurable computing do better? If can, how to achieve that? We first identify that the biggest energy efficiency gains of the CPUs and GPUs come from the dedicated vector units, i.e., vector instruction units in CPUs and CUDA cores in GPUs. FPGA uses DSPs and lookup tables (LUTs) to compose the needed computation, which incurs overhead when compared to using vector units directly. New reconfigurable computing, e.g., “FPGA+vector units” is a novel and feasible solution to improve energy efficiency. In this paper, we propose to map arbitrary-precision integer multiplication onto such a “FPGA+vector units” platform, i.e., AMD/Xilinx Versal ACAP architecture, a heterogeneous reconfigurable computing platform that features 400 AI engine tensor cores (AIE) running at 1 GHz, FPGA programmable logic (PL), and a general-purpose CPU in the system fabricated with the TSMC 7nm technology. Designing on Versal ACAP incurs several challenges and we propose AIM: Arbitrary-precision Integer Multiplication on Versal ACAP to automate and optimize the design. AIM accelerator is composed of AIEs, PL, and CPU. AIM framework includes analytical models to guide design space exploration and AIM automatic code generation to facilitate the system design and on-board design verification. We deploy the AIM framework on three different applications, including large integer multiplication (LIM), RSA, and Mandelbrot, on the AMD/Xilinx Versal ACAP VCK190 evaluation board. Our experimental results show that compared to existing accelerators, AIM achieves up to 12.6x, and 2.1x energy efficiency gains over the Intel Xeon Ice Lake 6346 CPU, and NVidia A5000 GPU respectively, which brings reconfigurable computing the most energy-efficient platform among CPUs and GPUs. 
    more » « less
  4. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues. 
    more » « less
  5. Adopting FPGA as an accelerator in datacenters is becoming mainstream for customized computing, but the fact that FPGAs are hard to program creates a steep learning curve for software programmers. Even with the help of high-level synthesis (HLS) , accelerator designers still have to manually perform code reconstruction and cumbersome parameter tuning to achieve optimal performance. While many learning models have been leveraged by existing work to automate the design of efficient accelerators, the unpredictability of modern HLS tools becomes a major obstacle for them to maintain high accuracy. To address this problem, we propose an automated DSE framework— AutoDSE —that leverages a bottleneck-guided coordinate optimizer to systematically find a better design point. AutoDSE detects the bottleneck of the design in each step and focuses on high-impact parameters to overcome it. The experimental results show that AutoDSE is able to identify the design point that achieves, on the geometric mean, 19.9× speedup over one CPU core for MachSuite and Rodinia benchmarks. Compared to the manually optimized HLS vision kernels in Xilinx Vitis libraries, AutoDSE can reduce their optimization pragmas by 26.38× while achieving similar performance. With less than one optimization pragma per design on average, we are making progress towards democratizing customizable computing by enabling software programmers to design efficient FPGA accelerators. 
    more » « less