skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Neural Relational Inference for Forecasting Trajectories
Understanding interactions between entities, e.g., joints of the human body, team sports players, etc., is crucial for tasks like forecasting. However, interactions between entities are commonly not observed and often hard to quantify. To address this challenge, recently, ‘Neural Relational Inference’ was introduced. It predicts static relations between entities in a system and provides an interpretable representation of the underlying system dynamics that are used for better trajectory forecasting. However, generally, relations between entities change as time progresses. Hence, static relations improperly model the data. In response to this, we develop Dynamic Neural Relational Inference (dNRI), which incorporates insights from sequential latent variable models to predict separate relation graphs for every time-step. We demonstrate on several real-world datasets that modeling dynamic relations improves forecasting of complex trajectories.  more » « less
Award ID(s):
1725729
PAR ID:
10190064
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
Page Range / eLocation ID:
4383 to 4392
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex systems are characterized by intricate interactions between entities that evolve dynamically over time. Accurate inference of these dynamic relationships is crucial for understanding and predicting system behavior. In this paper, we propose Regulatory Temporal Interaction Network Inference (RiTINI) for inferring time-varying interaction graphs in complex systems using a novel combination of space-and-time graph attentions and graph neural ordinary differential equations (ODEs). RiTINI leverages time-lapse signals on a graph prior, as well as perturbations of signals at various nodes in order to effectively capture the dynamics of the underlying system. This approach is distinct from traditional causal inference networks, which are limited to inferring acyclic and static graphs. In contrast, RiTINI can infer cyclic, directed, and time-varying graphs, providing a more comprehensive and accurate representation of complex systems. The graph attention mechanism in RiTINI allows the model to adaptively focus on the most relevant interactions in time and space, while the graph neural ODEs enable continuous-time modeling of the system’s dynamics. We evaluate RiTINI’s performance on simulations of dynamical systems, neuronal networks, and gene regulatory networks, demonstrating its state-of-the-art capability in inferring interaction graphs compared to previous methods. 
    more » « less
  2. What can we learn about the functional organization of cortical microcircuits from large-scale recordings of neural activity? To obtain an explicit and interpretable model of time-dependent functional connections between neurons and to establish the dynamics of the cortical information flow, we develop ‘dynamic neural relational inference’ (dNRI). We study both synthetic and real-world neural spiking data and demonstrate that the developed method is able to uncover the dynamic relations between neurons more reliably than existing baselines. 
    more » « less
  3. We consider the problem of analyzing timestamped relational events between a set of entities, such as messages between users of an on-line social network. Such data are often analyzed using static or discrete-time network models, which discard a significant amount of information by aggregating events over time to form network snapshots. In this paper, we introduce a block point process model (BPPM) for continuous-time event-based dynamic networks. The BPPM is inspired by the well-known stochastic block model (SBM) for static networks. We show that networks generated by the BPPM follow an SBM in the limit of a growing number of nodes. We use this property to develop principled and efficient local search and variational inference procedures initialized by regularized spectral clustering. We fit BPPMs with exponential Hawkes processes to analyze several real network data sets, including a Facebook wall post network with over 3,500 nodes and 130,000 events. 
    more » « less
  4. null (Ed.)
    Relational integration is required when multiple explicit representations of relations between entities must be jointly considered to make inferences. We provide an overview of the neural substrate of relational integration in humans and the processes that support it, focusing on work on analogical and deductive reasoning. In addition to neural evidence, we consider behavioral and computational work that has informed neural investigations of the representations of individual relations and of relational integration. In very general terms, evidence from neuroimaging, neuropsychological, and neuromodulatory studies points to a small set of regions (generally left lateralized) that appear to constitute key substrates for component processes of relational integration. These include posterior parietal cortex, implicated in the representation of first-order relations (e.g., A:B); rostrolateral pFC, apparently central in integrating first-order relations so as to generate and/or evaluate higher-order relations (e.g., A:B::C:D); dorsolateral pFC, involved in maintaining relations in working memory; and ventrolateral pFC, implicated in interference control (e.g., inhibiting salient information that competes with relevant relations). Recent work has begun to link computational models of relational representation and reasoning with patterns of neural activity within these brain areas. 
    more » « less
  5. Summary Relational arrays represent measures of association between pairs of actors, often in varied contexts or over time. Trade flows between countries, financial transactions between individuals, contact frequencies between school children in classrooms and dynamic protein-protein interactions are all examples of relational arrays. Elements of a relational array are often modelled as a linear function of observable covariates. Uncertainty estimates for regression coefficient estimators, and ideally the coefficient estimators themselves, must account for dependence between elements of the array, e.g., relations involving the same actor. Existing estimators of standard errors that recognize such relational dependence rely on estimating extremely complex, heterogeneous structure across actors. This paper develops a new class of parsimonious coefficient and standard error estimators for regressions of relational arrays. We leverage an exchangeability assumption to derive standard error estimators that pool information across actors, and are substantially more accurate than existing estimators in a variety of settings. This exchangeability assumption is pervasive in network and array models in the statistics literature, but not previously considered when adjusting for dependence in a regression setting with relational data. We demonstrate improvements in inference theoretically, via a simulation study, and by analysis of a dataset involving international trade. 
    more » « less