skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: DISTRIBUTED BIAS DETECTION IN CYBER-PHYSICAL SYSTEMS
An attacker can effectively publish false measurements in distributed cyber-physical systems with noisy measurements. These biased false measurements can be impossible to distinguish from noise and enable the attacker to gain a small but persistent economic advantage. The residual sum, a fundamental measurement of bias in cyber-physical systems, is employed to develop a detection scheme for bias attacks. The scheme is highly efficient, privacy preserving and effectively detects bias attacks.  more » « less
Award ID(s):
1837472
PAR ID:
10190269
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Critical Infrastructure Protection XIV
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Securing cyber-physical systems (CPS) like the Smart Grid against cyber attacks is making it imperative for the system defenders to plan for investing in the cybersecurity resources of cyber-physical critical infrastructure. Given the constraint of limited resources that can be invested in the cyber layer of the cyber-physical smart grid, optimal allocation of these resources has become a priority for the defenders of the grid. This paper proposes a methodology for optimizing the allocation of resources for the cybersecurity infrastructure in a smart grid using attack-defense trees and game theory. The proposed methodology uses attack-defense trees (ADTs) for analyzing the cyber-attack paths (attacker strategies) within the grid and possible defense strategies to prevent those attacks. The attack-defense strategy space (ADSS) provides a comprehensive list of interactions between the attacker and the defender of the grid. The proposed methodology uses the ADSS from the ADT analysis for a game-theoretic formulation (GTF) of attacker-defender interaction. The GTF allows us to obtain strategies for the defender in order to optimize cybersecurity resource allocation in the smart grid. The implementation of the proposed methodology is validated using a synthetic smart grid model equipped with cyber and physical components depicting the feasibility of the methodology for real-world implementation. 
    more » « less
  2. Abstract

    The rise in smart water technologies has introduced new cybersecurity vulnerabilities for water infrastructures. However, the implications of cyber‐physical attacks on the systems like urban drainage systems remain underexplored. This research delves into this gap, introducing a method to quantify flood risks in the face of cyber‐physical threats. We apply this approach to a smart stormwater system—a real‐time controlled network of pond‐conduit configurations, fitted with water level detectors and gate regulators. Our focus is on a specific cyber‐physical threat: false data injection (FDI). In FDI attacks, adversaries introduce deceptive data that mimics legitimate system noises, evading detection. Our risk assessment incorporates factors like sensor noises and weather prediction uncertainties. Findings reveal that FDIs can amplify flood risks by feeding the control system false data, leading to erroneous outflow directives. Notably, FDI attacks can reshape flood risk dynamics across different storm intensities, accentuating flood risks during less severe but more frequent storms. This study offers valuable insights for strategizing investments in smart stormwater systems, keeping cyber‐physical threats in perspective. Furthermore, our risk quantification method can be extended to other water system networks, such as irrigation channels and multi‐reservoir systems, aiding in cyber‐defense planning.

     
    more » « less
  3. Cyber-physical systems are vulnerable to a variety of cyber, physical and cyber-physical attacks. The security of cyber-physical systems can be enhanced beyond what can be achieved through firewalls and trusted components by building trust from observed and/or expected behaviors. These behaviors can be encoded as invariants. Information flows that do not satisfy the invariants are used to identify and isolate malfunctioning devices and cyber intrusions. However, the distributed architectures of cyber-physical systems often contain multiple access points that are physically and/or digitally linked. Thus, invariants may be difficult to determine and/or computationally prohibitive to check in real time. Researchers have employed various methods for determining the invariants by analyzing the designs of and/or data generated by cyber-physical systems such as water treatment plants and electric power grids. This chapter compares the effectiveness of detecting attacks on a water treatment plant using design-centric invariants versus data-centric rules, the latter generated using a variety of data mining methods. The methods are compared based on the maximization of true positives and minimization of false positives. 
    more » « less
  4. Cyber-physical systems (CPS) have been increasingly attacked by hackers. CPS are especially vulnerable to attackers that have full knowledge of the system's configuration. Therefore, novel anomaly detection algorithms in the presence of a knowledgeable adversary need to be developed. However, this research is still in its infancy due to limited attack data availability and test beds. By proposing a holistic attack modeling framework, we aim to show the vulnerability of existing detection algorithms and provide a basis for novel sensor-based cyber-attack detection. Stealthy Attack GEneration (SAGE) for CPS serves as a tool for cyber-risk assessment of existing systems and detection algorithms for practitioners and researchers alike. Stealthy attacks are characterized by malicious injections into the CPS through input, output, or both, which produce bounded changes in the detection residue. By using the SAGE framework, we generate stealthy attacks to achieve three objectives: (i) Maximize damage, (ii) Avoid detection, and (iii) Minimize the attack cost. Additionally, an attacker needs to adhere to the physical principles in a CPS (objective iv). The goal of SAGE is to model worst-case attacks, where we assume limited information asymmetries between attackers and defenders (e.g., insider knowledge of the attacker). Those worst-case attacks are the hardest to detect, but common in practice and allow understanding of the maximum conceivable damage. We propose an efficient solution procedure for the novel SAGE optimization problem. The SAGE framework is illustrated in three case studies. Those case studies serve as modeling guidelines for the development of novel attack detection algorithms and comprehensive cyber-physical risk assessment of CPS. The results show that SAGE attacks can cause severe damage to a CPS, while only changing the input control signals minimally. This avoids detection and keeps the cost of an attack low. This highlights the need for more advanced detection algorithms and novel research in cyber-physical security. 
    more » « less
  5. In face of an increasing number of automotive cyber-physical threat scenarios, the issue of adversarial destabilization of the lateral motion of target vehicles through direct attacks on their steering systems has been extensively studied. A more subtle question is whether a cyberattacker can destabilize the target vehicle lateral motion through improper engagement of the vehicle brakes and/or anti-lock braking systems (ABS). Motivated by such a question, this paper investigates the impact of cyber-physical attacks that exploit the braking/ABS systems to adversely affect the lateral motion stability of the targeted vehicles. Using a hybrid physical/dynamic tire-road friction model, it is shown that if a braking system/ABS attacker manages to continuously vary the longitudinal slips of the wheels, they can violate the necessary conditions for asymptotic stability of the underlying linear time-varying (LTV) dynamics of the lateral motion. Furthermore, the minimal perturbations of the wheel longitudinal slips that result in lateral motion instability under fixed slip values are derived. Finally, a real-time algorithm for monitoring the lateral motion dynamics of vehicles against braking/ABS cyber-physical attacks is devised. This algorithm, which can be efficiently computed using the modest computational resources of automotive embedded processors, can be utilized along with other intrusion detection techniques to infer whether a vehicle braking system/ABS is experiencing a cyber-physical attack. Numerical simulations in the presence of realistic CAN bus delays, destabilizing slip value perturbations obtained from solving quadratic programs on an embedded ARM Cortex-M3 emulator, and side-wind gusts demonstrate the effectiveness of the proposed methodology. 
    more » « less