skip to main content


Title: Model of variability estimation: factors influencing human prediction and estimation of variability in continuous information
Award ID(s):
1632222
NSF-PAR ID:
10190297
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Theoretical Issues in Ergonomics Science
Volume:
21
Issue:
2
ISSN:
1463-922X
Page Range / eLocation ID:
220 to 238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract

    We use an ensemble of simulations of a coupled model (NCAR Community Earth System Model) driven by natural radiative forcing estimates over the pre‐industrial past millennium to test the efficacy of methods designed to remove forced variability from proxy‐based climate reconstructions and estimate residual internal variability (e.g., a putative “Atlantic Multidecadal Oscillation”). Within the framework of these experiments, the forced component of surface temperature change can be estimated accurately from the ensemble mean, and the internal variability of each of the independent realizations can be accurately assessed by subtracting off that estimate. We show in this case, where the true internal variability is known, that regression‐based methods of removing the forced component from proxy reconstructions will, in the presence of uncertainties in the underlying natural radiative forcing, fail to yield accurate estimates thereof, incorrectly attributing unresolved forced features (and multidecadal spectral peaks associated with them) to internal variability.

     
    more » « less
  3. Abstract

    There is growing evidence that rather than using a single brain imaging modality to study its association with physiological or symptomatic features, the field is paying more attention to fusion of multimodal information. However, most current multimodal fusion approaches that incorporate functional magnetic resonance imaging (fMRI) are restricted to second‐level 3D features, rather than the original 4D fMRI data. This trade‐off is that the valuable temporal information is not utilized during the fusion step. Here we are motivated to propose a novel approach called “parallel group ICA+ICA” that incorporates temporal fMRI information from group independent component analysis (GICA) into a parallel independent component analysis (ICA) framework, aiming to enable direct fusion of first‐level fMRI features with other modalities (e.g., structural MRI), which thus can detect linked functional network variability and structural covariations. Simulation results show that the proposed method yields accurate intermodality linkage detection regardless of whether it is strong or weak. When applied to real data, we identified one pair of significantly associated fMRI‐sMRI components that show group difference between schizophrenia and controls in both modalities, and this linkage can be replicated in an independent cohort. Finally, multiple cognitive domain scores can be predicted by the features identified in the linked component pair by our proposed method. We also show these multimodal brain features can predict multiple cognitive scores in an independent cohort. Overall, results demonstrate the ability of parallel GICA+ICA to estimate joint information from 4D and 3D data without discarding much of the available information up front, and the potential for using this approach to identify imaging biomarkers to study brain disorders.

     
    more » « less