skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of click-stream data to predict stem careers from student usage of an intelligent tutoring system
In recent years, we have seen the continuous and rapid increase of job openings in Science, Technology, Engineering and Math (STEM)-related fields. Unfortunately, these positions are not met with an equal number of workers ready to fill them. Efforts are being made to find durable solutions for this phenomena, and they start by encouraging young students to enroll in STEM college majors. However, enrolling in a STEM major requires specific skills in math and science that are learned in schools. Hopefully, institutions are adopting educational software that collects data from the students' usage. This gathered data will serve to conduct analysis and detect students' behaviors, predict their performances and their eventual college enrollment. As we will outline in this paper, we used data collected from the students' usage of an Intelligent Tutoring System to predict whether they would pursue a career in STEM-related fields. We conducted different types of analysis called "problem-based approach" and "skill-based approach". The problem- based approach focused on evaluating students' actions based on the problems they solved. Likewise, in the skill-based approach we evaluated their usage based on the skills they had practiced. Furthermore, we investigated whether comparing students' features with those of their peer schoolmates can improve the prediction models in both the skill-based and the problem-based approaches. The experimental re- sults showed that the skill-based approach with school aggregation achieved the best results with regard to a combination of two metrics which are the Area Under the Receiver Operating Characteristic Curve (AUC) and the Root Mean Squared Error (RMSE).  more » « less
Award ID(s):
1636847 1661987
PAR ID:
10190351
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of educational data mining
Volume:
12
Issue:
2
ISSN:
2157-2100
Page Range / eLocation ID:
1-18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial visualization is the ability to mentally manipulate, visualize, and transform objects in one’s mind. Numerous research studies have reported that spatial ability is strongly associated with predicting success and retention in STEM-related fields such as math, engineering, computer programming, and science. Spatial skills are a critical cognitive ability for many technical fields, particularly engineering. Studies have shown the importance of free-hand sketching in the development of 3-D spatial skills. Similarly, sketching is an integral skill in the engineering design process, especially in the idea-generation phase. However, little work has been performed examining the link between spatial skills and the quality of sketches produced during the engineering design process. There were two phases to data collection for this research. In the first phase, 127 undergraduate engineering students completed four spatial tests. In the second phase, 101 students returned to complete three design tasks. This paper examines the performance of the 17 low spatial and 13 high spatial visualizers on one of these tasks where individuals are asked to design ways for remote villagers to catch and use rainwater. Through analysis of the sketches produced by the students, initial insights indicate that there may be an association between the spatial skills of students and the quality of the sketches they produce for their engineering design solutions. These insights will be discussed relative to the potential influence of spatial skills and sketch quality on engineering education, specifically in developing design capability. 
    more » « less
  2. Consistent with national trends, only about ½ of students who intend to major in STEM disciplines at Maryville College (MC) complete bachelor’s degrees in these fields. The Scots Science Scholars (S3) program was funded through the National Science Foundation’s STEM Talent Extension Program to increase the number of students graduating with STEM degrees from MC. The S3 program enrolls college freshmen who have an interest in STEM majors and math ACT scores between 21 and 27, with emphasis on students from groups underrepresented in STEM and first-generation college students. The program consists of a summer bridge, a living-learning community, early engagement in STEM research, a seminar series that exposes students to STEM careers and research fields, academic support through a first-year seminar class, peer tutoring, and time-management counseling. The program has enrolled 6 cohorts of students (n = 97) since 2013, (54% female, 22% underrepresented minorities and 35% first-generation college students). From 2013-2017, S3 compared favorably to the general college population: 96% of all S3 completed the first year of college, 69% declared STEM majors, and 85% returned to the college for a second year (compared to 71%, p < 0.001). Overall, S 3 students persist at the college longer than non-S3 students (P<0.01). Compared to a matched control group, S 3 had significantly higher STEM major declaration rates (68% vs. 38%), higher rates of STEM retention through the junior year (41% vs. 20%), and improved overall college persistence (P< 0.01). Students report high levels of satisfaction with the summer program. At the end of the summer program, students report gains in skills and attitudes that are important for success in STEM. They also perform significantly better on math and chemistry assessments after completing the program. College-wide, the number of students enrolled in STEM majors at Maryville has increased by 52% since the inception of S3 , and STEM undergraduate research productivity has increased markedly. Our data suggest the S3 program is an important component of institutional changes that are increasing the STEM population and building a robust and productive STEM culture at a liberal arts college. 
    more » « less
  3. McFarland, Jenny (Ed.)
    Many science, technology, engineering, and math (STEM) community college students do not complete their degree, and these students are more likely to be women or in historically excluded racial or ethnic groups. In introductory courses, low grades can trigger this exodus. Implementation of high-impact study strategies could lead to increased academic performance and retention. The examination of study strategies rarely occurs at the community college level, even though community colleges educate approximately half of all STEM students in the United States who earn a bachelor’s degree. To fill this research gap, we studied students in two biology courses at a Hispanic-serving community college. Students were asked their most commonly used study strategies at the start and end of the semester. They were given a presentation on study skills toward the beginning of the semester and asked to self-assess their study strategies for each exam. We observed a significantly higher course grade for students who reported spacing their studying and creating drawings when controlling for demographic factors, and usage of these strategies increased by the end of the semester. We conclude that high-impact study strategies can be taught to students in community college biology courses and result in higher course performance. 
    more » « less
  4. Colleges are becoming increasingly diverse, including strengthening representation of students with disabilities in STEM (Science, Teaching, Engineering, and Math) fields; however, representation still lags behind national trends. To adapt to this changing demographic and improve representation, STEM college professors must be prepared to grant equitable access to the STEM curriculum and enhance scientific communication skills. This practice brief outlines how a college science faculty applied the Universal Design for Learning (UDL) framework to improve scientific communication skills equitably among college students with diverse needs during a 10-week NSF-REU (National Science Foundation – Research Experiences for Undergraduates) at the host institution summer program during the COVID-19 pandemic. It also provides recommendations about how students with disabilities (i.e., chronic illness, chronic pain, depression, anxiety, and attention deficit hyperactivity disorder [ADHD]) which may have been exacerbated by the COVID-19 pandemic. Applying the UDL framework increased student confidence in applying the scientific method and led to gains in students' perception of their ability to use their skills to solve scientific problems. STEM faculty can use the lessons from the NSF-REU summer program outlined in this work to develop inclusive and accessible STEM programs for students with diverse needs across the country. Moreover, this work highlights the need for STEM faculty to involve Disability Services coordinators as active members in research programs to ensure equity and inclusion. 
    more » « less
  5. null (Ed.)
    The recent development in transportation, such as energy-efficient and autonomous vehicles, defines a condition for the students in transportation engineering. Students in the field of transportation engineering should be ready upon their graduation with new knowledge and skills that are compatible with the need of the industry and sustainable engineering practices. During summers of2018 and 2019, we developed and implemented an eight-week program to increase the knowledge and skills of students coming from multidisciplinary fields related to autonomous vehicles. Problem of “How much will platooning reduce fuel consumption and emissions per vehicle mile traveled?” was instrumentalized in subsequent activities to introduce the comprehensive knowledge structure of autonomous vehicles. The engineering concept of reducing the cost and sustainability was embedded in the leading research question that helped us to develop and implement activities on an overall knowledge structure in autonomous vehicles. The goal of using problem-based learning activities was not to encourage the students to focus on reaching the solution merely. We aimed to introduce the multidisciplinary knowledge and critical skills aspects of learning about disruptive technologies. In this paper, we will discuss how a multidisciplinary research approach was incorporated into a problem-based learning activity. The students were introduced the subjects related to math, physics, computer science, and biology as the integration of the knowledge structure of autonomous vehicles. We will also present the results on students’ use of critical skills such as machine learning and computer programming. 
    more » « less