skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Delivering Contextual Knowledge and Critical Skills of Disruptive Technologies through Problem-based Learning in a Research Experiences for Undergraduates Setting
The recent development in transportation, such as energy-efficient and autonomous vehicles, defines a condition for the students in transportation engineering. Students in the field of transportation engineering should be ready upon their graduation with new knowledge and skills that are compatible with the need of the industry and sustainable engineering practices. During summers of2018 and 2019, we developed and implemented an eight-week program to increase the knowledge and skills of students coming from multidisciplinary fields related to autonomous vehicles. Problem of “How much will platooning reduce fuel consumption and emissions per vehicle mile traveled?” was instrumentalized in subsequent activities to introduce the comprehensive knowledge structure of autonomous vehicles. The engineering concept of reducing the cost and sustainability was embedded in the leading research question that helped us to develop and implement activities on an overall knowledge structure in autonomous vehicles. The goal of using problem-based learning activities was not to encourage the students to focus on reaching the solution merely. We aimed to introduce the multidisciplinary knowledge and critical skills aspects of learning about disruptive technologies. In this paper, we will discuss how a multidisciplinary research approach was incorporated into a problem-based learning activity. The students were introduced the subjects related to math, physics, computer science, and biology as the integration of the knowledge structure of autonomous vehicles. We will also present the results on students’ use of critical skills such as machine learning and computer programming.  more » « less
Award ID(s):
1719501
PAR ID:
10223348
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2020 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The role of modern engineers as problem-definer often require collaborating with cross-disciplinary teams of professionals to understand and effectively integrate the role of other disciplines and accelerate innovation. To prepare future engineers for this emerging role, undergraduate engineering students should engage in collaborative and interdisciplinary activities with faculties and students from various disciplines (e.g., engineering and social science). Such cross-disciplinary experiences of undergraduate engineering students are not common in today’s university curriculum. Through a project funded by the division of Engineering Education and Centers (EEC) of the National Science Foundation (NSF), a research team of the West Virginia University developed and offered a Holistic Engineering Project Experience (HEPE) to the engineering students. Holistic engineering is an approach catering to the overall engineering profession, instead of focusing on any distinctive engineering discipline such as electrical, civil, chemical, or mechanical engineering. Holistic Engineering is based upon the fact that the traditional engineering courses do not offer sufficient non-technical skills to the engineering students to work effectively in cross-disciplinary social problems (e.g., development of transportation systems and services). The Holistic Engineering approach enables engineering students to learn non-engineering skills (e.g., strategic communication skills) beyond engineering math and sciences, which play a critical role in solving complex 21st-century engineering problems. The research team offered the HEPE course in Spring 2020 semester, where engineering students collaborated with social science students (i.e., students from economics and strategic communication disciplines) to solve a contemporary, complex, open-ended transportation engineering problem with social consequences. Social science students also received the opportunity to develop a better understanding of technical aspects in science and engineering. The open ended problem presented to the students was to “Restore and Improve Urban Infrastructure” in connection to the future deployment of connected and autonomous vehicles, which is identified as a grand challenge by the National Academy of Engineers (NAE) [1]. 
    more » « less
  2. Early involvement in engineering research has proven to be a highly effective way to inspire undergraduate students to pursue advanced studies or research-intensive careers. By engaging students in real-world, hands-on research projects, they not only sharpen their problem-solving skills but also develop the intellectual independence needed to tackle complex engineering challenges. These benefits are amplified when the research experience is multidisciplinary, allowing students to engage with topics beyond the confines of their chosen major. Moreover, participation in a collaborative cohort—where continual interactions and shared learning experiences occur—helps foster a sense of community and shared purpose, further enhancing the learning process. This paper presents the outcomes and impacts of a unique undergraduate research program conducted collaboratively between Oklahoma State University, Stillwater, and the University of Alabama in Huntsville. What sets this program apart is its fusion of engineering and engineering technology disciplines, its blend of applied and fundamental research, and its focus on multidisciplinary topics such as human safety, fire protection technology, mechanical engineering technology, electrical engineering, and artificial intelligence. The program engages students from sophomore to senior levels, offering them a chance to explore various research methodologies and work on projects that span multiple fields of engineering. This exposure helps them cultivate a comprehensive understanding of engineering systems and their real-world applications. In this paper, we will delve into the structure and activities of the Research Experiences for Undergraduates (REU) program, discussing its various components as well as the educational and research outcomes it has produced. A central theme of the program is its focus on multidisciplinary research, which ranges from technical fields such as fire protection and mechanical engineering technology to more advanced areas like electrical engineering and artificial intelligence. This breadth of topics ensures that students are equipped with a wide range of skills, from analytical problem-solving to creative thinking, as they learn to approach engineering challenges from multiple perspectives. Additionally, the program’s emphasis on cohort-building activities plays a crucial role in shaping the students’ experiences. By promoting collaboration among students from different disciplines, the program encourages the cross-pollination of ideas, mutual learning, and the development of soft skills such as communication, teamwork, and leadership. The interactions fostered within the cohort help students build a network of peers who share similar academic and career aspirations, strengthening their commitment to research and professional development. The paper will also present the results of both formative and summative assessments of the program, highlighting its impacts on student learning, skill development, and long-term career trajectories. By examining these outcomes, we demonstrate how this collaborative and multidisciplinary research program has successfully nurtured the next generation of independent researchers and engineering leaders, equipping them to meet the challenges of an increasingly complex and interconnected world. 
    more » « less
  3. Metacognition is the understanding of your own knowledge including what knowledge you do not have and what knowledge you do have. This includes knowledge of strategies and regulation of one’s own cognition. Studying metacognition is important because higher-order thinking is commonly used, and problem-solving skills are positively correlated with metacognition. A positive previous disposition to metacognition can improve problem-solving skills. Metacognition is a key skill in design and manufacturing, as teams of engineers must solve complex problems. Moreover, metacognition increases individual and team performance and can lead to more original ideas. This study discusses the assessment of metacognitive skills in engineering students by having the students participate in hands-on and virtual reality activities related to design and manufacturing. The study is guided by two research questions: (1) do the proposed activities affect students’ metacognition in terms of monitoring, awareness, planning, self-checking, or strategy selection, and (2) are there other components of metacognition that are affected by the design and manufacturing activities? The hypothesis is that the participation in the proposed activities will improve problem-solving skills and metacognitive awareness of the engineering students. A total of 34 undergraduate students participated in the study. Of these, 32 were male and 2 were female students. All students stated that they were interested in pursuing a career in engineering. The students were divided into two groups with the first group being the initial pilot run of the data. In this first group there were 24 students, in the second group there were 10 students. The groups’ demographics were nearly identical to each other. Analysis of the collected data indicated that problem-solving skills contribute to metacognitive skills and may develop first in students before larger metacognitive constructs of awareness, monitoring, planning, self-checking, and strategy selection. Based on this, we recommend that the problem-solving skills and expertise in solving engineering problems should be developed in students before other skills emerge or can be measured. While we are sure that the students who participated in our study have awareness as well as the other metacognitive skills in reading, writing, science, and math, they are still developing in relation to engineering problems. 
    more » « less
  4. This research paper presents preliminary results of an NSF-supported interdisciplinary collaboration between undergraduate engineering students and preservice teachers. The fields of engineering and elementary education share similar challenges when it comes to preparing undergraduate students for the new demands they will encounter in their profession. Engineering students need interprofessional skills that will help them value and negotiate the contributions of various disciplines while working on problems that require a multidisciplinary approach. Increasingly, the solutions to today's complex problems must integrate knowledge and practices from multiple disciplines and engineers must be able to recognize when expertise from outside their field can enhance their perspective and ability to develop innovative solutions. However, research suggests that it is challenging even for professional engineers to understand the roles, responsibilities, and integration of various disciplines, and engineering curricula have traditionally left little room for development of non-technical skills such as effective communication with a range of audiences and an ability to collaborate in multidisciplinary teams. Meanwhile, preservice teachers need new technical knowledge and skills that go beyond traditional core content knowledge, as they are now expected to embed engineering into science and coding concepts into traditional subject areas. There are nationwide calls to integrate engineering and coding into PreK-6 education as part of a larger campaign to attract more students to STEM disciplines and to increase exposure for girls and minority students who remain significantly underrepresented in engineering and computer science. Accordingly, schools need teachers who have not only the knowledge and skills to integrate these topics into mainstream subjects, but also the intention to do so. However, research suggests that preservice teachers do not feel academically prepared and confident enough to teach engineering-related topics. This interdisciplinary project provided engineering students with an opportunity to develop interprofessional skills as well as to reinforce their technical knowledge, while preservice teachers had the opportunity to be exposed to engineering content, more specifically coding, and develop competence for their future teaching careers. Undergraduate engineering students enrolled in a computational methods course and preservice teachers enrolled in an educational technology course partnered to plan and deliver robotics lessons to fifth and sixth graders. This paper reports on the effects of this collaboration on twenty engineering students and eight preservice teachers. T-tests were used to compare participants’ pre-/post- scores on a coding quiz. A post-lesson written reflection asked the undergraduate students to describe their robotics lessons and what they learned from interacting with their cross disciplinary peers and the fifth/sixth graders. Content analysis was used to identify emergent themes. Engineering students’ perceptions were generally positive, recounting enjoyment interacting with elementary students and gaining communication skills from collaborating with non-technical partners. Preservice teachers demonstrated gains in their technical knowledge as measured by the coding quiz, but reported lacking the confidence to teach coding and robotics independently of their partner engineering students. Both groups reported gaining new perspectives from working in interdisciplinary teams and seeing benefits for the fifth and sixth grade participants, including exposing girls and students of color to engineering and computing. 
    more » « less
  5. We are experiencing a revolution in vehicle operation, with fully automated robotaxis deployed and available for public use in major U.S. markets in 2023. These vehicles, while imperfect, already are arguably safer than the average human driver. Despite this rapid progress, there remain significant research and development problems that must be addressed; beyond this, there is an underdeveloped workforce for skilled researchers, developers, and practitioners in these areas, a fact that may delay necessary advances. We have created and run for two years a National Science Foundation funded Research Experience for Undergraduates (NSF REU) focused on solving both unmet research needs, and workforce development and pipeline programs. In our REU, which makes use of simulation and two full-scale, street-legal drive-by-wire electric vehicles with perception, planning, and control capabilities, our primary goals include to (1) provide hands-on experiences to undergraduate students who otherwise might not have research opportunities to learn fundamental theories in autonomous vehicle development, (2) allow students to design algorithms to practice software development and evaluation using real vehicles on real test courses, (3) strengthen their confidence, self-guided capabilities, and research skills, and (4) increase the number of students, including those from diverse backgrounds and technical disciplines, interested in graduate programs to ultimately provide a quality research and development workforce to both academia and industry. Over the initial two years, a cohort of 8 diverse students each year learned fundamental self-driving and computer networking skills including coding for drive-by-wire vehicles, computer vision, use of localization, and interpretation of richer sensor data, as well as network and communication protocols. The students were introduced to research ideation and publishing concepts, mentored in designing and testing hypotheses, and then involved in two challenges related to self-driving and networked vehicles. Two teams of 4 designed, implemented, tested various self-drive and V2X algorithms using real vehicles on a test course, analyzed/evaluated test results, wrote technical reports, and delivered presentations. After the summer program was over, the technical reports were published in peer reviewed conferences and journals. Survey results show that students attained significant & real-world computer science skills in autonomous vehicle development leveraging real vehicles available. The programs also increased research career interests and strengthened students’ confidence, self-guided capabilities, and research skills, while additionally supporting the development of workshop materials, simulators, and related content that provide valuable resources for others planning to develop an undergraduate curriculum to teach self-drive and networked vehicle development. 
    more » « less