skip to main content


Title: Model-Finding for Externally Verifying FOL Ontologies: A Study of Spatial Ontologies
Use and reuse of an ontology requires prior ontology verification which encompasses, at least, proving that the ontology is internally consistent and consistent with representative datasets. First-order logic (FOL) model finders are among the only available tools to aid us in this undertaking, but proving consistency of FOL ontologies is theoretically intractable while also rarely succeeding in practice, with FOL model finders scaling even worse than FOL theorem provers. This issue is further exacerbated when verifying FOL ontologies against datasets, which requires constructing models with larger domain sizes. This paper presents a first systematic study of the general feasibility of SAT-based model finding with FOL ontologies. We use select spatial ontologies and carefully controlled synthetic datasets to identify key measures that determine the size and difficulty of the resulting SAT problems. We experimentally show that these measures are closely correlated with the runtimes of Vampire and Paradox, two state-of-the-art model finders. We propose a definition elimination technique and demonstrate that it can be a highly effective measure for reducing the problem size and improving the runtime and scalability of model finding.  more » « less
Award ID(s):
1937099 1565811
NSF-PAR ID:
10190461
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proc. of the International Conference on Formal Ontology in Information System (FOIS-2020)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    While OWL and RDF are by far the most popular logic-based languages for Semantic Web Ontologies, some well-designed ontologies are only available in languages with a much richer expressivity, such as first-order logic (FOL) or the ISO standard Common Logic. This inhibits reuse of these ontologies by the wider Semantic Web Community. While converting OWL ontologies to FOL is straightforward, the reverse problem of finding the closest OWL approximation of an FOL ontology is undecidable. However, for most practical purposes, a ``good enough'' OWL approximation need not be perfect to enable wider reuse by the Semantic Web Community. This paper outlines such a conversion approach by first normalizing FOL sentences into a function-free prenex conjunctive normal (FF-PCNF) that strips away minor syntactic differences and then applying a pattern-based approach to identify common OWL axioms. It is tested on the over 2,000 FOL ontologies from the Common Logic Ontology Repository. 
    more » « less
  2. Abstract Motivation

    Modern problems of concept annotation associate an object of interest (gene, individual, text document) with a set of interrelated textual descriptors (functions, diseases, topics), often organized in concept hierarchies or ontologies. Most ontology can be seen as directed acyclic graphs (DAGs), where nodes represent concepts and edges represent relational ties between these concepts. Given an ontology graph, each object can only be annotated by a consistent sub-graph; that is, a sub-graph such that if an object is annotated by a particular concept, it must also be annotated by all other concepts that generalize it. Ontologies therefore provide a compact representation of a large space of possible consistent sub-graphs; however, until now we have not been aware of a practical algorithm that can enumerate such annotation spaces for a given ontology.

    Results

    We propose an algorithm for enumerating consistent sub-graphs of DAGs. The algorithm recursively partitions the graph into strictly smaller graphs until the resulting graph becomes a rooted tree (forest), for which a linear-time solution is computed. It then combines the tallies from graphs created in the recursion to obtain the final count. We prove the correctness of this algorithm, propose several practical accelerations, evaluate it on random graphs and then apply it to characterize four major biomedical ontologies. We believe this work provides valuable insights into the complexity of concept annotation spaces and its potential influence on the predictability of ontological annotation.

    Availability and implementation

    https://github.com/shawn-peng/counting-consistent-sub-DAG

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract

    Over the last couple of decades, there has been a rapid growth in the number and scope of agricultural genetics, genomics and breeding databases and resources. The AgBioData Consortium (https://www.agbiodata.org/) currently represents 44 databases and resources (https://www.agbiodata.org/databases) covering model or crop plant and animal GGB data, ontologies, pathways, genetic variation and breeding platforms (referred to as ‘databases’ throughout). One of the goals of the Consortium is to facilitate FAIR (Findable, Accessible, Interoperable, and Reusable) data management and the integration of datasets which requires data sharing, along with structured vocabularies and/or ontologies. Two AgBioData working groups, focused on Data Sharing and Ontologies, respectively, conducted a Consortium-wide survey to assess the current status and future needs of the members in those areas. A total of 33 researchers responded to the survey, representing 37 databases. Results suggest that data-sharing practices by AgBioData databases are in a fairly healthy state, but it is not clear whether this is true for all metadata and data types across all databases; and that, ontology use has not substantially changed since a similar survey was conducted in 2017. Based on our evaluation of the survey results, we recommend (i) providing training for database personnel in a specific data-sharing techniques, as well as in ontology use; (ii) further study on what metadata is shared, and how well it is shared among databases; (iii) promoting an understanding of data sharing and ontologies in the stakeholder community; (iv) improving data sharing and ontologies for specific phenotypic data types and formats; and (v) lowering specific barriers to data sharing and ontology use, by identifying sustainability solutions, and the identification, promotion, or development of data standards. Combined, these improvements are likely to help AgBioData databases increase development efforts towards improved ontology use, and data sharing via programmatic means.

    Database URL https://www.agbiodata.org/databases

     
    more » « less
  4. This paper addresses the problem of automatic generation of natural language descriptions for ontology-described artifacts. The original motivation for the work is the challenge of providing textual narratives of automatically generated scientific workflows (e.g., paragraphs that scientists can include in their publications). The paper presents two systems which generate descriptions of sets of atoms derived from a collection of ontologies. The first system, called nlgPhylogeny, demonstrates the feasibility of the task in the Phylotastic project, providing evolutionary biologists with narrative for automatically generated analysis workflows. nlgPhylogeny utilizes the fact that the Grammatical Framework (GF) is suitable for the natural language generation (NLG) task; the paper shows how elements of the ontologies in Phylotastic, such as web services and information artifacts, can be encoded in GF for the NLG task. The second system, called 𝚗𝚕𝚐𝙾𝚗𝚝𝚘𝚕𝚘𝚐𝚢𝐴, is a generalization of nlgPhylogeny. It eliminates the requirement that a GF needs to be defined and proposes the use of annotated ontologies for NLG. Given a set of annotated ontologies, 𝚗𝚕𝚐𝙾𝚗𝚝𝚘𝚕𝚘𝚐𝚢𝐴 generates a GF suitable for the creation of natural language descriptions of sets of atoms derived from these ontologies. The paper describes the algorithms used in the development of nlgPhylogeny and 𝚗𝚕𝚐𝙾𝚗𝚝𝚘𝚕𝚘𝚐𝚢𝐴 and discusses potential applications of these systems. 
    more » « less
  5. Background: When phenotypic characters are described in the literature, they may be constrained or clarified with additional information such as the location or degree of expression, these terms are called “modifiers”. With effort underway to convert narrative character descriptions to computable data, ontologies for such modifiers are needed. Such ontologies can also be used to guide term usage in future publications. Spatial and method modifiers are the subjects of ontologies that already have been developed or are under development. In this work, frequency (e.g., rarely, usually), certainty (e.g., probably, definitely), degree (e.g., slightly, extremely), and coverage modifiers (e.g., sparsely, entirely) are collected, reviewed, and used to create two modifier ontologies with different design considerations. The basic goal is to express the sequential relationships within a type of modifiers, for example, usually is more frequent than rarely, in order to allow data annotated with ontology terms to be classified accordingly. Method: Two designs are proposed for the ontology, both using the list pattern: a closed ordered list (i.e., five-bin design) and an open ordered list design. The five-bin design puts the modifier terms into a set of 5 fixed bins with interval object properties, for example, one_level_more/less_frequently_than, where new terms can only be added as synonyms to existing classes. The open list approach starts with 5 bins, but supports the extensibility of the list via ordinal properties, for example, more/less_frequently_than, allowing new terms to be inserted as a new class anywhere in the list. The consequences of the different design decisions are discussed in the paper. CharaParser was used to extract modifiers from plant, ant, and other taxonomic descriptions. After a manual screening, 130 modifier words were selected as the candidate terms for the modifier ontologies. Four curators/experts (three biologists and one information scientist specialized in biosemantics) reviewed and categorized the terms into 20 bins using the Ontology Term Organizer (OTO) (http://biosemantics.arizona.edu/OTO). Inter-curator variations were reviewed and expressed in the final ontologies. Results: Frequency, certainty, degree, and coverage terms with complete agreement among all curators were used as class labels or exact synonyms. Terms with different interpretations were either excluded or included using “broader synonym” or “not recommended” annotation properties. These annotations explicitly allow for the user to be aware of the semantic ambiguity associated with the terms and whether they should be used with caution or avoided. Expert categorization results showed that 16 out of 20 bins contained terms with full agreements, suggesting differentiating the modifiers into 5 levels/bins balances the need to differentiate modifiers and the need for the ontology to reflect user consensus. Two ontologies, developed using the Protege ontology editor, are made available as OWL files and can be downloaded from https://github.com/biosemantics/ontologies. Contribution: We built the first two modifier ontologies following a consensus-based approach with terms commonly used in taxonomic literature. The five-bin ontology has been used in the Explorer of Taxon Concepts web toolkit to compute the similarity between characters extracted from literature to facilitate taxon concepts alignments. The two ontologies will also be used in an ontology-informed authoring tool for taxonomists to facilitate consistency in modifier term usage. 
    more » « less