Heat stress compromises wheat (Triticum aestivium) resistance to Hessian fly (HF, Mayetiola destructor (Say)). This study aimed to investigate the impact of heat stress on transcript expression of wheat genes associated with resistance to HF infestation under normal and heat-stressed conditions. To this end, ‘Molly’, a wheat cultivar containing the resistance gene H13, was subjected to HF infestation, heat stress, and the combination of HF infestation and heat stress. Our RNA-Seq approach identified 21 wheat genes regulated by HF infestation under normal temperatures (18 °C) and 155 genes regulated by HF infestation when plants were exposed to 35 °C for 6 h. Three differentially expressed genes (DEGs) from the RNA-Seq analysis were selected to validate the gene function of these DEGs using the RT-qPCR approach, indicating that these DEGs may differentially contribute to the expression of wheat resistance during the early stage of wheat–HF interaction under various stresses. Moreover, the jasmonate ZIM domain (JAZ) gene was also significantly upregulated under these treatments. Our results suggest that the genes in heat-stressed wheat plants are more responsive to HF infestation than those in plants growing under normal temperature conditions, and these genes in HF-infested wheat plants are more responsive to heat stress than those in plants without infestation.
more »
« less
Analyzing Molecular Basis of Heat-Induced Loss-of-Wheat Resistance to Hessian Fly (Diptera: Cecidomyiidae) Infestation Using RNA-Sequencing
Abstract Heat stress compromises wheat resistance to Hessian fly (HF, Mayetiola destructor (Say)) (Diptera: Cecidomyiidae) infestation. The objective of this research is to analyze the molecular basis of heat-induced loss of wheat resistance to HF infestation using RNA Sequencing (RNA-seq). To this end, two resistant wheat cultivars ‘Molly’ and ‘Caldwell’ containing the resistance genes H13 and H6, respectively, were infested with an avirulent HF biotype GP and treated with different temperatures to examine the impact of heat stress on their resistance phenotypes. Tissue samples collected from HF feeding sites in Molly plants were subjected to RNA-seq analysis to determine the effect of heat stress on transcript expression of genes in wheat plants. Our results indicate that resistance to HF infestation in Caldwell is more sensitive to heat stress than that in Molly, and that heat stress down-regulates most genes involved in primary metabolism and biosynthesis of lignin and cuticular wax, but up-regulate most or all genes involved in auxin and 12-oxo-phytodienoic acid (OPDA) signaling pathways. Our results and previous reports suggest that heat stress may impair the processes in wheat plants that produce and mobilize chemical resources needed for synthesizing defensive compounds, weaken cell wall and cuticle defense, decrease OPDA signaling, but increase auxin signaling, leading to the suppressed resistance and activation of susceptibility.
more »
« less
- Award ID(s):
- 1664409
- PAR ID:
- 10190680
- Date Published:
- Journal Name:
- Journal of Economic Entomology
- Volume:
- 113
- Issue:
- 3
- ISSN:
- 0022-0493
- Page Range / eLocation ID:
- 1504 to 1512
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundThe sugarcane aphid (SCA;Melanaphis sacchari) has emerged as a key pest on sorghum in the United States that feeds from the phloem tissue, drains nutrients, and inflicts physical damage to plants. Previously, it has been shown that SCA reproduction was low and high on sorghum SC265 and SC1345 plants, respectively, compared to RTx430, an elite sorghum male parental line (reference line). In this study, we focused on identifying the defense-related genes that confer resistance to SCA at early and late time points in sorghum plants with varied levels of SCA resistance. ResultsWe used RNA-sequencing approach to identify the global transcriptomic responses to aphid infestation on RTx430, SC265, and SC1345 plants at early time points 6, 24, and 48 h post infestation (hpi) and after extended period of SCA feeding for 7 days. Aphid feeding on the SCA-resistant line upregulated the expression of 3827 and 2076 genes at early and late time points, respectively, which was relatively higher compared to RTx430 and SC1345 plants. Co-expression network analysis revealed that aphid infestation modulates sorghum defenses by regulating genes corresponding to phenylpropanoid metabolic pathways, secondary metabolic process, oxidoreductase activity, phytohormones, sugar metabolism and cell wall-related genes. There were 187 genes that were highly expressed during the early time of aphid infestation in the SCA-resistant line, including genes encoding leucine-rich repeat (LRR) proteins, ethylene response factors, cell wall-related, pathogenesis-related proteins, and disease resistance-responsive dirigent-like proteins. At 7 days post infestation (dpi), 173 genes had elevated expression levels in the SCA-resistant line and were involved in sucrose metabolism, callose formation, phospholipid metabolism, and proteinase inhibitors. ConclusionsIn summary, our results indicate that the SCA-resistant line is better adapted to activate early defense signaling mechanisms in response to SCA infestation because of the rapid activation of the defense mechanisms by regulating genes involved in monolignol biosynthesis pathway, oxidoreductase activity, biosynthesis of phytohormones, and cell wall composition. This study offers further insights to better understand sorghum defenses against aphid herbivory.more » « less
-
Abstract BACKGROUNDThe wheat stem sawfly (WSS,Cephus cinctus) is a major pest of wheat (Triticum aestivum) and can cause significant yield losses. WSS damage results from stem boring and/or cutting, leading to the lodging of wheat plants. Although solid‐stem wheat genotypes can effectively reduce larval survival, they may have lower yields than hollow‐stem genotypes and show inconsistent solidness expression. Because of limited resistance sources to WSS, evaluating diverse wheat germplasm for novel resistance genes is crucial. We evaluated 91 accessions across five wild wheat species (Triticum monococcum,T. urartu,T. turgidum,T. timopheevii, andAegilops tauschii) and common wheat cultivars (T. aestivum) for antixenosis (host selection) and antibiosis (host suitability) to WSS. Host selection was measured as the number of eggs after adult oviposition, and host suitability was determined by examining the presence or absence of larval infestation within the stem. The plants were grown in the greenhouse and brought to the field for WSS infestation. In addition, a phylogenetic analysis was performed to determine the relationship between the WSS traits and phylogenetic clustering. RESULTSOverall,Ae. tauschii,T. turgidumandT. urartuhad lower egg counts and larval infestation thanT. monococcum, andT. timopheevii.T. monococcum,T. timopheevii,T. turgidum, andT. urartuhad lower larval weights compared withT. aestivum. CONCLUSIONThis study shows that wild relatives of wheat could be a valuable source of alleles for enhancing resistance to WSS and identifies specific germplasm resources that may be useful for breeding. © 2024 The Authors.Pest Management Sciencepublished by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.more » « less
-
Plants have evolved with complex sensory systems to recognize signals from multiple environmental conditions. A light signal is one of the most important environmental factors that regulates not only photomorphogenesis but also the developmental strategy of plants throughout their life cycle. The molecular mechanisms of the light signaling modules and the interactions between light and other environmental signals have been studied extensively. However, to enhance plant growth, particularly in crop production, we need to gain a deeper understanding of how light regulates plant development within gene regulatory networks (GRNs). Understanding GRNs is important to identify not only the novel genes and transcription factors in light signaling pathways but also the factors that connect light signaling and other environmental signals. Weighted gene co-expression network analysis (WGCNA) has been used to study GRN. We applied WGCNA to 58 RNA-seq samples of wild-type Arabidopsis grown under different light treatments and built the gene co-expression networks. We identified 14 different modules that are significantly associated with different light treatments. Among them, the honeydew1 and ivory display significant association with the dark-grown seedlings. Many hub genes identified from these modules are significantly enriched in light responses, including responses to red, far-red, blue light, light stimulus, auxin responses, and photosynthesis. Although we found many known transcription factors in these modules, we also identified several unknown genes and transcription factors that are significantly associated with the honeydew1 module and highly differentially expressed between dark and light conditions. To examine whether the hub genes in the honeydew1 module play a role in light signaling, we isolated mutants in selected hub genes and measured hypocotyl lengths under dark, red, and far-red light conditions. These assays showed that four hub genes are involved in regulating light signaling pathways. This study provides a new approach to identifying novel genes in GRNs underlying light responses in Arabidopsis.more » « less
-
Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions.more » « less
An official website of the United States government

