Attention allows us to select relevant and ignore irrelevant information from our complex environments. What happens when attention shifts from one item to another? To answer this question, it is critical to have tools that accurately recover neural representations of both feature and location information with high temporal resolution. In the present study, we used human electroencephalography (EEG) and machine learning to explore how neural representations of object features and locations update across dynamic shifts of attention. We demonstrate that EEG can be used to create simultaneous time courses of neural representations of attended features (time point-by-time point inverted encoding model reconstructions) and attended location (time point-by-time point decoding) during both stable periods and across dynamic shifts of attention. Each trial presented two oriented gratings that flickered at the same frequency but had different orientations; participants were cued to attend one of them and on half of trials received a shift cue midtrial. We trained models on a stable period from Hold attention trials and then reconstructed/decoded the attended orientation/location at each time point on Shift attention trials. Our results showed that both feature reconstruction and location decoding dynamically track the shift of attention and that there may be time points during the shifting of attention when 1) feature and location representations become uncoupled and 2) both the previously attended and currently attended orientations are represented with roughly equal strength. The results offer insight into our understanding of attentional shifts, and the noninvasive techniques developed in the present study lend themselves well to a wide variety of future applications. NEW & NOTEWORTHY We used human EEG and machine learning to reconstruct neural response profiles during dynamic shifts of attention. Specifically, we demonstrated that we could simultaneously read out both location and feature information from an attended item in a multistimulus display. Moreover, we examined how that readout evolves over time during the dynamic process of attentional shifts. These results provide insight into our understanding of attention, and this technique carries substantial potential for versatile extensions and applications.
more »
« less
Improved Attention Models for Memory Augmented Neural Network Adaptive Controllers
We introduced a working memory augmented adaptive controller in our recent work. The controller uses attention to read from and write to the working memory. Attention allows the controller to read specific information that is relevant and update its working memory with information based on its relevance, similar to how humans pick relevant information from the enormous amount of information that is received through various senses. The retrieved information is used to modify the final control input computed by the controller. We showed that this modification speeds up learning.In the above work, we used a soft-attention mechanism for the adaptive controller. Controllers that use soft attention update and read information from all memory locations at all the times, the extent of which is determined by their relevance. But, for the same reason, the information stored in the memory can be lost. In contrast, hard attention updates and reads from only one location at any point of time, which allows the memory to retain information stored in other locations. The downside is that the controller can fail to shift attention when the information in the current location becomes less relevant.We propose an attention mechanism that comprises of (i) a hard attention mechanism and additionally (ii) an attention reallocation mechanism. The attention reallocation enables the controller to reallocate attention to a different location when the relevance of the location it is reading from diminishes. The reallocation also ensures that the information stored in the memory before the shift in attention is retained which can be lost in both soft and hard attention mechanisms. Through detailed simulations of various scenarios for two link robot robot arm systems we illustrate the effectiveness of the proposed attention mechanism.
more »
« less
- Award ID(s):
- 1839429
- PAR ID:
- 10190800
- Date Published:
- Journal Name:
- 2020 American Control Conference
- Page Range / eLocation ID:
- 639 to 646
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we propose a novel control architecture, inspired from neuroscience, for adaptive control of continuous time systems. The objective here is to design control architectures and algorithms that can learn and adapt quickly to changes that are even abrupt. The proposed architecture, in the setting of standard neural network (NN) based adaptive control, augments an external working memory to the NN. The learning system stores, in its external working memory, recently observed feature vectors from the hidden layer of the NN that are relevant and forgets the older irrelevant values. It retrieves relevant vectors from the working memory to modify the final control signal generated by the controller. The use of external working memory improves the context inducing the learning system to search in a particular direction. This directed learning allows the learning system to find a good approximation of the unknown function even after abrupt changes quickly. We consider two classes of controllers for illustration of our ideas (i) a model reference NN adaptive controller for linear systems with matched uncertainty (ii) backstepping NN controller for strict feedback systems. Through extensive simulations and specific metrics we show that memory augmentation improves learning significantly even when the system undergoes sudden changes. Importantly, we also provide evidence for the proposed mechanism by which this specific memory augmentation improves learning.more » « less
-
Time-critical applications, such as virtual reality and cyber-physical systems, require not only low end-to-end latency, but also the timely delivery of information. While high-speed Ethernet adoption has reduced interconnect fabric latency, bottlenecks persist in data storage, retrieval, and processing. This work examines status updating systems where sources generate time-stamped updates that are stored in memory, and readers fulfill client requests by accessing these stored updates. Clients then utilize the retrieved updates for further computations. The asynchronous interaction between writers and readers presents challenges, including: (i) the potential for readers to encounter stale updates due to temporal disparities between the writing and reading processes, (ii) the necessity to synchronize writers and readers to prevent race conditions, and (iii) the imperative for clients to process and deliver updates within strict temporal constraints. In the first part, we study optimal reading policies in both discrete and continuous time domains to minimize the Age of Information (AoI) of source updates at the client. One of the main contributions of this part includes showing that lazy reading is timely. In the second part, we analyze the impact of synchronization primitives on update timeliness in a packet forwarding scenario, where location updates are written to a shared routing table, and application updates read from it to ensure correct delivery. Our theoretical and experimental results show that using a lock-based primitive is suitable for timely application update delivery at higher location update rates, while a lock-free mechanism is more effective at lower rates. The final part focuses on optimizing update processing when updates require multiple sequential computational steps. We compare the age performance across a multitude of pipelined and parallel server models and characterize the age-power trade-off in these models. Additionally, our analysis reveals that synchronous sequential processing is more conducive to timely update processing than asynchronous methods, and that parallel processing outperforms pipeline services in terms of AoI.more » « less
-
Prefrontal cortex modulates sensory signals in extrastriate visual cortex, in part via its direct projections from the frontal eye field (FEF), an area involved in selective attention. We find that working memory-related activity is a dominant signal within FEF input to visual cortex. Although this signal alone does not evoke spiking responses in areas V4 and MT during memory, the gain of visual responses in these areas increases, and neuronal receptive fields expand and shift towards the remembered location, improving the stimulus representation by neuronal populations. These results provide a basis for enhancing the representation of working memory targets and implicate persistent FEF activity as a basis for the interdependence of working memory and selective attention.more » « less
-
Soft robots have recently drawn extensive attention thanks to their unique ability of adapting to complicated environments. Soft robots are designed in a variety of shapes of aiming for many different applications. However, accurate modelling and control of soft robots is still an open problem due to the complex robot structure and uncertain interaction with the environment. In fact, there is no unified framework for the modeling and control of generic soft robots. In this paper, we present a novel data-driven machine learning method for modeling a cable-driven soft robot. This machine learning algorithm, named deterministic learning (DL), uses soft robot motion data to train a radial basis function neural network (RBFNN). The soft robot motion dynamics are then guaranteed to be accurately identified, represented, and stored as an RBFNN model with converged constant neural network weights. To validate our method, We have built a simulated soft robot almost identical to our real inchworm soft robot, and we have tested the DL algorithm in simulation. Furthermore, a neural network weight combining technique is used which can extract and combine useful dynamics information from multiple robot motion trajectories.more » « less
An official website of the United States government

