skip to main content


Title: The Effect of Informing Agency in Self-Directed Online Learning Environments
Background and Context: Current introductory instruction fails to identify, structure, and sequence the many skills involved in programming. Objective: We proposed a theory which identifies four distinct skills that novices learn incrementally. These skills are tracing, writing syntax, comprehending templates (reusable abstractions of programming knowledge), and writing code with templates. We theorized that explicit instruction of these skills decreases cognitive demand. Method: We conducted an exploratory mixed-methods study and compared students’ exercise completion rates, error rates, ability to explain code, and engagement when learning to program. We compared material that reflects this theory to more traditional material that does not distinguish between skills. Findings: Teaching skills incrementally resulted in improved completion rate on practice exercises, and decreased error rate and improved understanding of the post-test. Implications: By structuring programming skills such that they can be taught explicitly and incrementally, we can inform instructional design and improve future research on understanding how novice programmers develop understanding.  more » « less
Award ID(s):
1735123
NSF-PAR ID:
10190888
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Learning at Scale
Page Range / eLocation ID:
77 to 89
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present in this paper the results of a randomized control trial experiment that compared the effectiveness of two instructional strategies that scaffold learners' code comprehension processes: eliciting Free Self-Explanation and a Socratic Method. Code comprehension, i.e., understanding source code, is a critical skill for both learners and professionals. Improving learners' code comprehension skills should result in improved learning which in turn should help with retention in intro-to-programming courses which are notorious for suffering from very high attrition rates due to the complexity of programming topics. To this end, the reported experiment is meant to explore the effectiveness of various strategies to elicit self-explanation as a way to improve comprehension and learning during complex code comprehension and learning activities in intro-to-programming courses. The experiment showed pre-/post-test learning gains of 30% (M = 0.30, SD = 0.47) for the Free Self-Explanation condition and learning gains of 59% (M = 0.59,SD = 0.39) for the Socratic method. Furthermore, we investigated the behavior of the two strategies as a function of students' prior knowledge which was measured using learners' pretest score. For the Free Self-Explanation condition, there was no significant difference in mean learning gains for low vs. high knowledge students. The magnitude of the difference in performance (mean difference= 0.02,95% CI: -0.34 to 0.39) was very small (eta squared = 0.006). Likewise, the Socratic method showed no significant difference in mean learning gains between low vs. high performing students. The magnitude of the performance difference (mean difference =-0.24,95% CI: -0.534 to 0.03) was large (eta squared = 0.10). These findings suggest that eliciting self-explanations can be used as an effective strategy and that guided self-explanations as in the Socratic method condition is more effective at inducing learning gains. 
    more » « less
  2. What knowledge does learning programming require? Prior work has focused on theorizing program writing and problem solving skills. We examine program comprehension and propose a formal theory of program tracing knowledge based on control flow paths through an interpreter program's source code. Because novices cannot understand the interpreter's programming language notation, we transform it into causal relationships from code tokens to instructions to machine state changes. To teach this knowledge, we propose a comprehension-first pedagogy based on causal inference, by showing, explaining, and assessing each path by stepping through concrete examples within many example programs. To assess this pedagogy, we built PLTutor, a tutorial system with a fixed curriculum of example programs. We evaluate learning gains among self-selected CS1 students using a block randomized lab study comparing PLTutor with Codecademy, a writing tutorial. In our small study, we find some evidence of improved learning gains on the SCS1, with average learning gains of PLTutor 60% higher than Codecademy (gain of 3.89 vs. 2.42 out of 27 questions). These gains strongly predicted midterms (R2=.64) only for PLTutor participants, whose grades showed less variation and no failures. 
    more » « less
  3. Often, security topics are only taught in advanced computer science (CS) courses. However, most US R1 universities do not require students to take these courses to complete an undergraduate CS degree. As a result, students can graduate without learning about computer security and secure programming practices. To gauge students’ knowledge and skills of secure programming, we conducted a coding interview with 21 students from two R1 universities in the United States. All the students in our study had at least taken Computer Systems or an equivalent course. We then analyzed the students’ approach to safe programming practices, such as avoiding unsafe functions like gets and strcpy, and basic security knowledge, such as writing code that assumes user inputs can be malicious. Our results suggest that students lack the key fundamental skills to write secure programs. For example, students rarely pay attention to details, such as compiler warnings, and often do not read programming language documentation with care. Moreover, some students’ understanding of memory layout is cursory, which is crucial for writing secure programs. We also found that some students are struggling with even the basics of C programming, even though it is the main language taught in Computer Systems courses. 
    more » « less
  4. Course-Based Undergraduate Research Experiences or CUREs promote student-centered learning through infusion of research principles within an undergraduate course. This is an ideal pedagogy for use in General Chemistry. CUREs provide access to research experience to a broader audience, which increases engagement and success. A CURE model was implemented in a second semester General Chemistry course at Pasadena City College, a Hispanic serving institution (HSI) community college. Student success rate in the CURE chemistry classroom increased by over 20% and students’ completion rates increased over 5%. In addition, success, and completion rates of Hispanic students in the class showed no achievement gap and an over 10% higher completion rate compared to students that took the non-CURE chemistry course. CUREs also had the added benefit of providing more populous groups of undergraduates with opportunities to get a taste of real-world working scenarios that would normally be reserved for upper-level graduate students. Adopting CUREs as an integral part of an institutions’ learning strategies promotes student engagement that will bridge the gaps in traditional learning, but also facilitate development of the essential soft skills required in the collaborative environment that is commonplace in working professional settings. The potential role and relationship of CUREs implementation regarding the revival and cultivation of polymathy among future students as well as its implications on the future of academic instruction based on connections made from historical and interdisciplinary observations are also explores. 
    more » « less
  5. Background and context. “Explain in Plain English” (EiPE) questions ask students to explain the high-level purpose of code, requiring them to understand the macrostructure of the program’s intent. A lot is known about techniques that experts use to comprehend code, but less is known about how we should teach novices to develop this capability. Objective. Identify techniques that can be taught to students to assist them in developing their ability to comprehend code and contribute to the body of knowledge of how novices develop their code comprehension skills. Method. We developed interventions that could be taught to novices motivated by previous research about how experts comprehend code: prompting students to identify beacons, identify the role of variables, tracing, and abstract tracing. We conducted think-aloud interviews of introductory programming students solving EiPE questions, varying which interventions each student was taught. Some participants were interviewed multiple times throughout the semester to observe any changes in behavior over time. Findings. Identifying beacons and the name of variable roles were rarely helpful, as they did not encourage students to integrate their understanding of that piece in relation to other lines of code. However, prompting students to explain each variable’s purpose helped them focus on useful subsets of the code, which helped manage cognitive load. Tracing was helpful when students incorrectly recognized common programming patterns or made mistakes comprehending syntax (text-surface). Prompting students to pick inputs that potentially contradicted their current understanding of the code was found to be a simple approach to them effectively selecting inputs to trace. Abstract tracing helped students see high-level, functional relationships between variables. In addition, we observed student spontaneously sketching algorithmic visualizations that similarly helped them see relationships between variables. Implications. Because students can get stuck at many points in the process of code comprehension, there seems to be no silver bullet technique that helps in every circumstance. Instead, effective instruction for code comprehension will likely involve teaching a collection of techniques. In addition to these techniques, meta-knowledge about when to apply each technique will need to be learned, but that is left for future research. At present, we recommend teaching a bottom-up, concrete-to-abstract approach. 
    more » « less