skip to main content

Title: Frequency Regulation in Hybrid Power Dynamics with Variable and Low Inertia due to Renewable Energy
As more non-synchronous renewable energy sources (RES) participate in power systems, the system's inertia decreases and becomes time dependent, challenging the ability of existing control schemes to maintain frequency stability. System operators, research laboratories, and academic institutes have expressed the importance to adapt to this new power system paradigm. As one of the potential solutions, virtual inertia has become an active research area. However, power dynamics have been modeled as time-invariant, by not modeling the variability in the system's inertia. To address this, we propose a new modeling framework for power system dynamics to simulate a time-varying evolution of rotational inertia coefficients in a network. We model power dynamics as a hybrid system with discrete modes representing different rotational inertia regimes of the network. We test the performance of two classical controllers from the literature in this new hybrid modeling framework: optimal closed-loop Model Predictive Control (MPC) and virtual inertia placement. Results show that the optimal closed-loop MPC controller (Linear MPC) performs the best in terms of cost; it is 82 percent less expensive than virtual inertia placement. It is also more efficient in terms of energy injected/absorbed to control frequency. To address the lower performance of virtual inertia placement, more » we then propose a new Dynamic Inertia Placement scheme and we find that it is more efficient in terms of cost (74 percent cheaper) and energy usage, compared to classical inertia placement schemes from the literature. « less
Authors:
; ; ; ;
Award ID(s):
1743772
Publication Date:
NSF-PAR ID:
10190928
Journal Name:
Frequency Regulation in Hybrid Power Dynamics with Variable and Low Inertia due to Renewable Energy
Page Range or eLocation-ID:
1592 to 1597
Sponsoring Org:
National Science Foundation
More Like this
  1. With the increasing penetration of non-synchronous variable renewable energy sources (RES) in power grids, the system's inertia decreases and varies over time, affecting the capability of current control schemes to handle frequency regulation. Providing virtual inertia to power systems has become an interesting topic of research, since it may provide a reasonable solution to address this new issue. However, power dynamics are usually modeled as time-invariant, without including the effect of varying inertia due to the presence of RES. This paper presents a framework to design a fixed learned controller based on datasets of optimal time-varying LQR controllers. In ourmore »scheme, we model power dynamics as a hybrid system with discrete modes representing different rotational inertia regimes of the grid. We test the performance of our controller in a twelve-bus system using different fixed inertia modes. We also study our learned controller as the inertia changes over time. By adding virtual inertia we can guarantee stability of high-renewable (low-inertia) modes. The novelty of our work is to propose a design framework for a stable controller with fixed gains for time-varying power dynamics. This is relevant because it would be simpler to implement a proportional controller with fixed gains compared to a time-varying control.« less
  2. Inertia from rotating masses of generators in power systems influence the instantaneous frequency change when an imbalance between electrical and mechanical power occurs. Renewable energy sources (RES), such as solar and wind power, are connected to the grid via electronic converters. RES connected through converters affect the system's inertia by decreasing it and making it time-varying. This new setting challenges the ability of current control schemes to maintain frequency stability. Proposing adequate controllers for this new paradigm is key for the performance and stability of future power grids. The contribution of this paper is a framework to learn sparse time-invariantmore »frequency controllers in a power system network with a time-varying evolution of rotational inertia. We model power dynamics using a Switched-Affine hybrid system to consider different modes corresponding to different inertia coefficients. We design a controller that uses as features, i.e. input, the systems states. In other words, we design a control proportional to the angles and frequencies. We include virtual inertia in the controllers to ensure stability. One of our findings is that it is possible to restrict communication between the nodes by reducing the number of features in the controller (from 22 to 10 in our case study) without disrupting performance and stability. Furthermore, once communication between nodes has reached a threshold, increasing it beyond this threshold does not improve performance or stability. We find a correlation between optimal feature selection in sparse controllers and the topology of the network.« less
  3. In isolated power systems with low rotational inertia, fast-frequency control strategies are required to maintain frequency stability. Furthermore, with limited resources in such isolated systems, the deployed control strategies have to provide the flexibility to handle operational constraints so the controller is optimal from a technical as well as an economical point-ofview. In this paper, a model predictive control (MPC) approach is proposed to maintain the frequency stability of these low inertia power systems, such as microgrids. Given a predictive model of the system, MPC computes control actions by recursively solving a finite-horizon, online optimization problem that satisfies peak powermore »output and ramp-rate constraints. MATLAB/Simulink based simulations show the effectiveness of the controller to reduce frequency deviations and the rate-of-change-of-frequency (ROCOF) of the system. By proper selection of controller parameters, desired performance can be achieved while respecting the physical constraints on inverter peak power and/or ramp-rates.« less
  4. Virtual inertia based control of renewable energy sources (RESs) helps to enhance the frequency stability of power systems. In this paper, a Control Area Network (CAN) communication-based method is demonstrated to emulate virtual inertia using commercial off-the-shelf inverters. This allows the currently installed systems to be retrofitted with virtual inertia in a cost-effective manner which would allow for higher RES penetration in power systems. The proof-of-concept is demonstrated using a Xantrex XW6048 hybrid inverter/charger and OPAL-RT real-time digital simulator. Results show that CAN-based communication can be an effective way to reduce frequency variations in the power system.
  5. This paper addresses the problem of hybrid control for a class of switched uncertain systems. The switched system under consideration is subject to structured uncertain dynamics in a linear fractional transformation (LFT) form and time-varying input delays. A novel hybrid controller is proposed, which consists of three major components: the integral quadratic constraint (IQC) dynamics, the continuous dynamics, and the jump dynamics. The IQC dynamics are developed by leveraging methodologies from robust control theory and are utilised to address the effects of time-varying input delays. The continuous dynamics are structured by feeding back not only measurement outputs but also somemore »system's internal signals. The jump dynamics enforce a jump (update/reset) at every switching time instant for the states of both IQC dynamics and continuous dynamics. Based on this, robust stability of the overall hybrid closed-loop system is established under the average dwell time framework with multiple Lyapunov functions. Moreover, the associated control synthesis conditions are fully characterised as linear matrix inequalities, which can be solved efficiently. An application example on regulation of a nonlinear switched electronic circuit system has been used to demonstrate effectiveness and usefulness of the proposed approach.« less