skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: The role of slow screw dislocations in controlling fast strain avalanche dynamics in body-centered cubic metals
Plasticity in body centered cubic (BCC) crystals is shown to be controlled by slow screw dislocation motion, owing to the thermally-activated process of kink pair nucleation and migration. Through three dimensional discrete dislocation dynamics simulations, this work unravels the mystery of how such slow screw dislocation behavior contributes to extremely rapid strain bursts in submicron BCC tungsten (W) pillars, which is typical of BCC metals. It is found that strain bursts are dominated by the motion of non-screw dislocations at low strain rate, but are more influenced by screw dislocations at high strain rate. The total, and partial strain burst magnitude due to screw dislocations alone, are found to exhibit rate dependence following a power law statistics with exponent of 0.65. Similar power law statistics are also obeyed for the standard deviation of the corresponding plastic strain rate. The role of screw dislocations is attributed to the changing nature of dislocation source operation at different strain rates. The corresponding spatial distribution of plastic deformation is also discussed based on the uniqueness of the simulation method in reproducing the distribution of slipped area and plastic strain with very high spatial resolution.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International journal of plasticity
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Continuum dislocation dynamics models of mesoscale plasticity consist of dislocation transport-reaction equations coupled with crystal mechanics equations. The coupling between these two sets of equations is such that dislocation transport gives rise to the evolution of plastic distortion (strain), while the evolution of the latter fixes the stress from which the dislocation velocity field is found via a mobility law. Earlier solutions of these equations employed a staggered solution scheme for the two sets of equations in which the plastic distortion was updated via time integration of its rate, as found from Orowan’s law. In this work, we show that such a direct time integration scheme can suffer from accumulation of numerical errors. We introduce an alternative scheme based on field dislocation mechanics that ensures consistency between the plastic distortion and the dislocation content in the crystal. The new scheme is based on calculating the compatible and incompatible parts of the plastic distortion separately, and the incompatible part is calculated from the current dislocation density field. Stress field and dislocation transport calculations were implemented within a finite element based discretization of the governing equations, with the crystal mechanics part solved by a conventional Galerkin method and the dislocation transport equations by the least squares method. A simple test is first performed to show the accuracy of the two schemes for updating the plastic distortion, which shows that the solution method based on field dislocation mechanics is more accurate. This method then was used to simulate an austenitic steel crystal under uniaxial loading and multiple slip conditions. By considering dislocation interactions caused by junctions, a hardening rate similar to discrete dislocation dynamics simulation results was obtained. The simulations show that dislocations exhibit some self-organized structures as the strain is increased. 
    more » « less
  2. Refractory multiprincipal element alloys (MPEAs) are promising materials to meet the demands of aggressive structural applications, yet require fundamentally different avenues for accommodating plastic deformation in the body-centered cubic (bcc) variants of these alloys. We show a desirable combination of homogeneous plastic deformability and strength in the bcc MPEA MoNbTi, enabled by the rugged atomic environment through which dislocations must navigate. Our observations of dislocation motion and atomistic calculations unveil the unexpected dominance of nonscrew character dislocations and numerous slip planes for dislocation glide. This behavior lends credence to theories that explain the exceptional high temperature strength of similar alloys. Our results advance a defect-aware perspective to alloy design strategies for materials capable of performance across the temperature spectrum.

    more » « less
  3. null (Ed.)
    Refractory multi-element alloys (RMEA) with body-centered cubic (bcc) structure have been the object of much research over the last decade due to their high potential as candidate materials for high- temperature applications. Most of these alloys display a remarkable strength at high temperatures, which cannot be explained by the standard model of bcc plasticity based on thermally-activated screw disloca- tion motion. Several works have pointed to chemical energy fluctuations as an essential aspect of RMEA strength that is not captured by standard models. In this work, we quantify the contribution of screw dis- locations to the strength of equiatomic Nb-Ta-V alloys using a kinetic Monte Carlo model fitted to solu- tion energetics obtained from atomistic calculations. In agreement with molecular dynamics simulations, we find that chemical energy fluctuations along the dislocation line lead to measurable concentrations of kinks in equilibrium in a wide temperature range. A fraction of these form cross-kink configurations, which are ultimately found to control screw dislocation motion and material strength. Our simulations (i) confirm that the evolution of cross kinks and self-pinning are strong contributors to the so-called ‘cocktail’ effect in this alloy at low temperature, and (ii) substantiate the notion that screw dislocation plasticity alone cannot explain the high temperature strength of bcc RMEA. 
    more » « less
  4. In this work, we performed in situ nanoindentation in TEM to capture the real-time 〈c + a〉 dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of 〈c + a〉 dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both 〈c + a〉 dislocation retraction and detwinning. Moreover, we note that the plastic zone comprised of 〈c + a〉 dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that, in addition to 〈a〉 dislocations, the I1 stacking fault bounded with a 〈1/2c+p〉 Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant 〈c + a〉 dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of 〈c + a〉 dislocation slip and twinning in Mg and alloys. 
    more » « less
  5. Abstract

    The deformation of crystalline materials by dislocation motion takes place in discrete amounts determined by the Burgers vector. Dislocations may move individually or in bundles, potentially giving rise to intermittent slip. This confers plastic deformation with a certain degree of variability that can be interpreted as being caused by stochastic fluctuations in dislocation behavior. However, crystal plasticity (CP) models are almost always formulated in a continuum sense, assuming that fluctuations average out over large material volumes and/or cancel out due to multi-slip contributions. Nevertheless, plastic fluctuations are known to be important in confined volumes at or below the micron scale, at high temperatures, and under low strain rate/stress deformation conditions. Here, we develop a stochastic solver for CP models based on the residence-time algorithm that naturally captures plastic fluctuations by sampling among the set of active slip systems in the crystal. The method solves the evolution equations of explicit CP formulations, which are recast as stochastic ordinary differential equations and integrated discretely in time. The stochastic CP model is numerically stable by design and naturally breaks the symmetry of plastic slip by sampling among the active plastic shear rates with the correct probability. This can lead to phenomena such as intermittent slip or plastic localization without adding external symmetry-breaking operations to the model. The method is applied to body-centered cubic tungsten single crystals under a variety of temperatures, loading orientations, and imposed strain rates.

    more » « less